forked from bubbliiiing/yolov7-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_fit.py
123 lines (105 loc) · 4.5 KB
/
utils_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import torch
from tqdm import tqdm
from utils.utils import get_lr
def fit_one_epoch(model_train, model, ema, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
loss = 0
val_loss = 0
if local_rank == 0:
print('Start Train')
pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
model_train.train()
for iteration, batch in enumerate(gen):
if iteration >= epoch_step:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = targets.cuda(local_rank)
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
if not fp16:
#----------------------#
# 前向传播
#----------------------#
outputs = model_train(images)
loss_value = yolo_loss(outputs, targets, images)
#----------------------#
# 反向传播
#----------------------#
loss_value.backward()
optimizer.step()
else:
from torch.cuda.amp import autocast
with autocast():
#----------------------#
# 前向传播
#----------------------#
outputs = model_train(images)
loss_value = yolo_loss(outputs, targets, images)
#----------------------#
# 反向传播
#----------------------#
scaler.scale(loss_value).backward()
scaler.step(optimizer)
scaler.update()
if ema:
ema.update(model_train)
loss += loss_value.item()
if local_rank == 0:
pbar.set_postfix(**{'loss' : loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Train')
print('Start Validation')
pbar = tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
if ema:
model_train_eval = ema.ema
else:
model_train_eval = model_train.eval()
for iteration, batch in enumerate(gen_val):
if iteration >= epoch_step_val:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = targets.cuda(local_rank)
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
#----------------------#
# 前向传播
#----------------------#
outputs = model_train_eval(images)
loss_value = yolo_loss(outputs, targets, images)
val_loss += loss_value.item()
if local_rank == 0:
pbar.set_postfix(**{'val_loss': val_loss / (iteration + 1)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Validation')
loss_history.append_loss(epoch + 1, loss / epoch_step, val_loss / epoch_step_val)
eval_callback.on_epoch_end(epoch + 1, model_train_eval)
print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
print('Total Loss: %.3f || Val Loss: %.3f ' % (loss / epoch_step, val_loss / epoch_step_val))
#-----------------------------------------------#
# 保存权值
#-----------------------------------------------#
if ema:
save_state_dict = ema.ema.state_dict()
else:
save_state_dict = model.state_dict()
if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
torch.save(save_state_dict, os.path.join(save_dir, "ep%03d-loss%.3f-val_loss%.3f.pth" % (epoch + 1, loss / epoch_step, val_loss / epoch_step_val)))
if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
print('Save best model to best_epoch_weights.pth')
torch.save(save_state_dict, os.path.join(save_dir, "best_epoch_weights.pth"))
torch.save(save_state_dict, os.path.join(save_dir, "last_epoch_weights.pth"))