forked from HandBrake/HandBrake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decomb.c
1350 lines (1173 loc) · 43.2 KB
/
decomb.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* decomb.c
Copyright (c) 2003-2016 HandBrake Team
This file is part of the HandBrake source code
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
The yadif algorithm was created by Michael Niedermayer.
Tritical's work inspired much of the comb detection code:
http://web.missouri.edu/~kes25c/
*/
/*****
Parameters:
Mode:
1 = yadif
2 = blend
4 = cubic interpolation
8 = EEDI2 interpolation
16 = Deinterlace each field to a separate frame
32 = Selectively deinterlace based on comb detection
Appended for EEDI2:
Magnitude thresh : Variance thresh : Laplacian thresh : Dilation thresh :
Erosion thresh : Noise thresh : Max search distance : Post-processing
Plus:
Parity
Defaults:
7:10:20:20:4:2:50:24:1:-1
*****/
/*****
These modes can be layered. For example, Yadif (1) + EEDI2 (8) = 9,
which will feed EEDI2 interpolations to yadif.
** Working combos:
1: Just yadif
2: Just blend
3: Switch between yadif and blend
4: Just cubic interpolate
5: Cubic->yadif
6: Switch between cubic and blend
7: Switch between cubic->yadif and blend
8: Just EEDI2 interpolate
9: EEDI2->yadif
10: Switch between EEDI2 and blend
11: Switch between EEDI2->yadif and blend
...okay I'm getting bored now listing all these different modes
12-15: EEDI2 will override cubic interpolation
*****/
#include "hb.h"
#include "hbffmpeg.h"
#include "eedi2.h"
#include "taskset.h"
#include "decomb.h"
#define PARITY_DEFAULT -1
#define MIN3(a,b,c) MIN(MIN(a,b),c)
#define MAX3(a,b,c) MAX(MAX(a,b),c)
// Some names to correspond to the pv->eedi_half array's contents
#define SRCPF 0
#define MSKPF 1
#define TMPPF 2
#define DSTPF 3
// Some names to correspond to the pv->eedi_full array's contents
#define DST2PF 0
#define TMP2PF2 1
#define MSK2PF 2
#define TMP2PF 3
#define DST2MPF 4
struct yadif_arguments_s {
hb_buffer_t *dst;
int parity;
int tff;
int mode;
};
typedef struct yadif_arguments_s yadif_arguments_t;
typedef struct eedi2_thread_arg_s {
hb_filter_private_t *pv;
int plane;
} eedi2_thread_arg_t;
typedef struct yadif_thread_arg_s {
hb_filter_private_t *pv;
int segment;
int segment_start[3];
int segment_height[3];
} yadif_thread_arg_t;
struct hb_filter_private_s
{
// Decomb parameters
int mode;
/* Make buffers to store a comb masks. */
hb_buffer_t * mask;
hb_buffer_t * mask_filtered;
hb_buffer_t * mask_temp;
int mask_box_x;
int mask_box_y;
uint8_t mask_box_color;
// EEDI2 parameters
int magnitude_threshold;
int variance_threshold;
int laplacian_threshold;
int dilation_threshold;
int erosion_threshold;
int noise_threshold;
int maximum_search_distance;
int post_processing;
// Deinterlace parameters
int parity;
int tff;
int yadif_ready;
int deinterlaced;
int blended;
int unfiltered;
int frames;
hb_buffer_t * ref[3];
hb_buffer_t * eedi_half[4];
hb_buffer_t * eedi_full[5];
int * cx2;
int * cy2;
int * cxy;
int * tmpc;
int cpu_count;
int segment_height[3];
taskset_t yadif_taskset; // Threads for Yadif - one per CPU
yadif_arguments_t * yadif_arguments; // Arguments to thread for work
taskset_t eedi2_taskset; // Threads for eedi2 - one per plane
hb_buffer_list_t out_list;
};
typedef struct
{
int tap[5];
int normalize;
} filter_param_t;
static int hb_decomb_init( hb_filter_object_t * filter,
hb_filter_init_t * init );
static int hb_decomb_work( hb_filter_object_t * filter,
hb_buffer_t ** buf_in,
hb_buffer_t ** buf_out );
static void hb_decomb_close( hb_filter_object_t * filter );
static const char decomb_template[] =
"mode=^"HB_INT_REG"$:"
"magnitude-thresh=^"HB_INT_REG"$:variance-thresh=^"HB_INT_REG"$:"
"laplacian-thresh=^"HB_INT_REG"$:dilation-thresh=^"HB_INT_REG"$:"
"erosion-thresh=^"HB_INT_REG"$:noise-thresh=^"HB_INT_REG"$:"
"search-distance=^"HB_INT_REG"$:postproc=^([0-3])$:parity=^([01])$";
hb_filter_object_t hb_filter_decomb =
{
.id = HB_FILTER_DECOMB,
.enforce_order = 1,
.name = "Decomb",
.settings = NULL,
.init = hb_decomb_init,
.work = hb_decomb_work,
.close = hb_decomb_close,
.settings_template = decomb_template,
};
// Borrowed from libav
#define times4(x) x, x, x, x
#define times1024(x) times4(times4(times4(times4(times4(x)))))
static const uint8_t hb_crop_table[256 + 2 * 1024] = {
times1024(0x00),
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C,0x3D,0x3E,0x3F,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A,0x7B,0x7C,0x7D,0x7E,0x7F,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F,
0xA0,0xA1,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF,
0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF,
0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF,
0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF,
0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF,
0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF,
times1024(0xFF)
};
static inline int cubic_interpolate_pixel( int y0, int y1, int y2, int y3 )
{
/* From http://www.neuron2.net/library/cubicinterp.html */
int result = ( y0 * -3 ) + ( y1 * 23 ) + ( y2 * 23 ) + ( y3 * -3 );
result = hb_crop_table[(result / 40) + 1024];
return result;
}
static void cubic_interpolate_line(
uint8_t *dst,
uint8_t *cur,
int width,
int height,
int stride,
int y)
{
int w = width;
int x;
for( x = 0; x < w; x++)
{
int a, b, c, d;
a = b = c = d = 0;
if( y >= 3 )
{
/* Normal top*/
a = cur[-3*stride];
b = cur[-stride];
}
else if( y == 2 || y == 1 )
{
/* There's only one sample above this pixel, use it twice. */
a = cur[-stride];
b = cur[-stride];
}
else if( y == 0 )
{
/* No samples above, triple up on the one below. */
a = cur[+stride];
b = cur[+stride];
}
if( y <= ( height - 4 ) )
{
/* Normal bottom*/
c = cur[+stride];
d = cur[3*stride];
}
else if( y == ( height - 3 ) || y == ( height - 2 ) )
{
/* There's only one sample below, use it twice. */
c = cur[+stride];
d = cur[+stride];
}
else if( y == height - 1)
{
/* No samples below, triple up on the one above. */
c = cur[-stride];
d = cur[-stride];
}
dst[0] = cubic_interpolate_pixel( a, b, c, d );
dst++;
cur++;
}
}
static void store_ref(hb_filter_private_t * pv, hb_buffer_t * b)
{
hb_buffer_close(&pv->ref[0]);
memmove(&pv->ref[0], &pv->ref[1], sizeof(hb_buffer_t *) * 2 );
pv->ref[2] = b;
}
static inline int blend_filter_pixel(filter_param_t *filter, int up2, int up1, int current, int down1, int down2)
{
/* Low-pass 5-tap filter */
int result = 0;
result += up2 * filter->tap[0];
result += up1 * filter->tap[1];
result += current * filter->tap[2];
result += down1 * filter->tap[3];
result += down2 * filter->tap[4];
result >>= filter->normalize;
result = hb_crop_table[result + 1024];
return result;
}
static void blend_filter_line(filter_param_t *filter,
uint8_t *dst,
uint8_t *cur,
int width,
int height,
int stride,
int y)
{
int w = width;
int x;
int up1, up2, down1, down2;
if (y > 1 && y < (height - 2))
{
up1 = -1 * stride;
up2 = -2 * stride;
down1 = 1 * stride;
down2 = 2 * stride;
}
else if (y == 0)
{
/* First line, so A and B don't exist.*/
up1 = up2 = 0;
down1 = 1 * stride;
down2 = 2 * stride;
}
else if (y == 1)
{
/* Second line, no A. */
up1 = up2 = -1 * stride;
down1 = 1 * stride;
down2 = 2 * stride;
}
else if (y == (height - 2))
{
/* Second to last line, no E. */
up1 = -1 * stride;
up2 = -2 * stride;
down1 = down2 = 1 * stride;
}
else if (y == (height -1))
{
/* Last line, no D or E. */
up1 = -1 * stride;
up2 = -2 * stride;
down1 = down2 = 0;
}
else
{
hb_error("Invalid value y %d heigh %d", y, height);
return;
}
for( x = 0; x < w; x++)
{
/* Low-pass 5-tap filter */
dst[0] = blend_filter_pixel(filter, cur[up2], cur[up1], cur[0],
cur[down1], cur[down2] );
dst++;
cur++;
}
}
// This function calls all the eedi2 filters in sequence for a given plane.
// It outputs the final interpolated image to pv->eedi_full[DST2PF].
static void eedi2_interpolate_plane( hb_filter_private_t * pv, int plane )
{
/* We need all these pointers. No, seriously.
I swear. It's not a joke. They're used.
All nine of them. */
uint8_t * mskp = pv->eedi_half[MSKPF]->plane[plane].data;
uint8_t * srcp = pv->eedi_half[SRCPF]->plane[plane].data;
uint8_t * tmpp = pv->eedi_half[TMPPF]->plane[plane].data;
uint8_t * dstp = pv->eedi_half[DSTPF]->plane[plane].data;
uint8_t * dst2p = pv->eedi_full[DST2PF]->plane[plane].data;
uint8_t * tmp2p2 = pv->eedi_full[TMP2PF2]->plane[plane].data;
uint8_t * msk2p = pv->eedi_full[MSK2PF]->plane[plane].data;
uint8_t * tmp2p = pv->eedi_full[TMP2PF]->plane[plane].data;
uint8_t * dst2mp = pv->eedi_full[DST2MPF]->plane[plane].data;
int * cx2 = pv->cx2;
int * cy2 = pv->cy2;
int * cxy = pv->cxy;
int * tmpc = pv->tmpc;
int pitch = pv->eedi_full[0]->plane[plane].stride;
int height = pv->eedi_full[0]->plane[plane].height;
int width = pv->eedi_full[0]->plane[plane].width;
int half_height = pv->eedi_half[0]->plane[plane].height;
// edge mask
eedi2_build_edge_mask( mskp, pitch, srcp, pitch,
pv->magnitude_threshold, pv->variance_threshold, pv->laplacian_threshold,
half_height, width );
eedi2_erode_edge_mask( mskp, pitch, tmpp, pitch, pv->erosion_threshold, half_height, width );
eedi2_dilate_edge_mask( tmpp, pitch, mskp, pitch, pv->dilation_threshold, half_height, width );
eedi2_erode_edge_mask( mskp, pitch, tmpp, pitch, pv->erosion_threshold, half_height, width );
eedi2_remove_small_gaps( tmpp, pitch, mskp, pitch, half_height, width );
// direction mask
eedi2_calc_directions( plane, mskp, pitch, srcp, pitch, tmpp, pitch,
pv->maximum_search_distance, pv->noise_threshold,
half_height, width );
eedi2_filter_dir_map( mskp, pitch, tmpp, pitch, dstp, pitch, half_height, width );
eedi2_expand_dir_map( mskp, pitch, dstp, pitch, tmpp, pitch, half_height, width );
eedi2_filter_map( mskp, pitch, tmpp, pitch, dstp, pitch, half_height, width );
// upscale 2x vertically
eedi2_upscale_by_2( srcp, dst2p, half_height, pitch );
eedi2_upscale_by_2( dstp, tmp2p2, half_height, pitch );
eedi2_upscale_by_2( mskp, msk2p, half_height, pitch );
// upscale the direction mask
eedi2_mark_directions_2x( msk2p, pitch, tmp2p2, pitch, tmp2p, pitch, pv->tff, height, width );
eedi2_filter_dir_map_2x( msk2p, pitch, tmp2p, pitch, dst2mp, pitch, pv->tff, height, width );
eedi2_expand_dir_map_2x( msk2p, pitch, dst2mp, pitch, tmp2p, pitch, pv->tff, height, width );
eedi2_fill_gaps_2x( msk2p, pitch, tmp2p, pitch, dst2mp, pitch, pv->tff, height, width );
eedi2_fill_gaps_2x( msk2p, pitch, dst2mp, pitch, tmp2p, pitch, pv->tff, height, width );
// interpolate a full-size plane
eedi2_interpolate_lattice( plane, tmp2p, pitch, dst2p, pitch, tmp2p2, pitch, pv->tff,
pv->noise_threshold, height, width );
if( pv->post_processing == 1 || pv->post_processing == 3 )
{
// make sure the edge directions are consistent
eedi2_bit_blit( tmp2p2, pitch, tmp2p, pitch, width, height );
eedi2_filter_dir_map_2x( msk2p, pitch, tmp2p, pitch, dst2mp, pitch, pv->tff, height, width );
eedi2_expand_dir_map_2x( msk2p, pitch, dst2mp, pitch, tmp2p, pitch, pv->tff, height, width );
eedi2_post_process( tmp2p, pitch, tmp2p2, pitch, dst2p, pitch, pv->tff, height, width );
}
if( pv->post_processing == 2 || pv->post_processing == 3 )
{
// filter junctions and corners
eedi2_gaussian_blur1( srcp, pitch, tmpp, pitch, srcp, pitch, half_height, width );
eedi2_calc_derivatives( srcp, pitch, half_height, width, cx2, cy2, cxy );
eedi2_gaussian_blur_sqrt2( cx2, tmpc, cx2, pitch, half_height, width);
eedi2_gaussian_blur_sqrt2( cy2, tmpc, cy2, pitch, half_height, width);
eedi2_gaussian_blur_sqrt2( cxy, tmpc, cxy, pitch, half_height, width);
eedi2_post_process_corner( cx2, cy2, cxy, pitch, tmp2p2, pitch, dst2p, pitch, height, width, pv->tff );
}
}
/*
* eedi2 interpolate this plane in a single thread.
*/
static void eedi2_filter_thread( void *thread_args_v )
{
hb_filter_private_t * pv;
int plane;
eedi2_thread_arg_t *thread_args = thread_args_v;
pv = thread_args->pv;
plane = thread_args->plane;
hb_log("eedi2 thread started for plane %d", plane);
while (1)
{
/*
* Wait here until there is work to do.
*/
taskset_thread_wait4start( &pv->eedi2_taskset, plane );
if( taskset_thread_stop( &pv->eedi2_taskset, plane ) )
{
/*
* No more work to do, exit this thread.
*/
break;
}
/*
* Process plane
*/
eedi2_interpolate_plane( pv, plane );
/*
* Finished this segment, let everyone know.
*/
taskset_thread_complete( &pv->eedi2_taskset, plane );
}
taskset_thread_complete( &pv->eedi2_taskset, plane );
}
// Sets up the input field planes for EEDI2 in pv->eedi_half[SRCPF]
// and then runs eedi2_filter_thread for each plane.
static void eedi2_planer( hb_filter_private_t * pv )
{
/* Copy the first field from the source to a half-height frame. */
int pp;
for( pp = 0; pp < 3; pp++ )
{
int pitch = pv->ref[1]->plane[pp].stride;
int height = pv->ref[1]->plane[pp].height;
int start_line = !pv->tff;
eedi2_fill_half_height_buffer_plane(
&pv->ref[1]->plane[pp].data[pitch * start_line],
pv->eedi_half[SRCPF]->plane[pp].data, pitch, height );
}
/*
* Now that all data is ready for our threads, fire them off
* and wait for their completion.
*/
taskset_cycle( &pv->eedi2_taskset );
}
/* EDDI: Edge Directed Deinterlacing Interpolation
Checks 4 different slopes to see if there is more similarity along a diagonal
than there was vertically. If a diagonal is more similar, then it indicates
an edge, so interpolate along that instead of a vertical line, using either
linear or cubic interpolation depending on mode. */
#define YADIF_CHECK(j) {\
int score = ABS(cur[-stride-1+j] - cur[+stride-1-j])\
+ ABS(cur[-stride +j] - cur[+stride -j])\
+ ABS(cur[-stride+1+j] - cur[+stride+1-j]);\
if( score < spatial_score ){\
spatial_score = score;\
if( ( pv->mode & MODE_DECOMB_CUBIC ) && !vertical_edge )\
{\
switch(j)\
{\
case -1:\
spatial_pred = cubic_interpolate_pixel(cur[-3 * stride - 3], cur[-stride -1], cur[+stride + 1], cur[3* stride + 3] );\
break;\
case -2:\
spatial_pred = cubic_interpolate_pixel( ( ( cur[-3*stride - 4] + cur[-stride - 4] ) / 2 ) , cur[-stride -2], cur[+stride + 2], ( ( cur[3*stride + 4] + cur[stride + 4] ) / 2 ) );\
break;\
case 1:\
spatial_pred = cubic_interpolate_pixel(cur[-3 * stride +3], cur[-stride +1], cur[+stride - 1], cur[3* stride -3] );\
break;\
case 2:\
spatial_pred = cubic_interpolate_pixel(( ( cur[-3*stride + 4] + cur[-stride + 4] ) / 2 ), cur[-stride +2], cur[+stride - 2], ( ( cur[3*stride - 4] + cur[stride - 4] ) / 2 ) );\
break;\
}\
}\
else\
{\
spatial_pred = ( cur[-stride +j] + cur[+stride -j] ) >>1;\
}\
static void yadif_filter_line(
hb_filter_private_t * pv,
uint8_t * dst,
uint8_t * prev,
uint8_t * cur,
uint8_t * next,
int plane,
int width,
int height,
int stride,
int parity,
int y)
{
/* While prev and next point to the previous and next frames,
prev2 and next2 will shift depending on the parity, usually 1.
They are the previous and next fields, the fields temporally adjacent
to the other field in the current frame--the one not being filtered. */
uint8_t *prev2 = parity ? prev : cur ;
uint8_t *next2 = parity ? cur : next;
int x;
int eedi2_mode = ( pv->mode & MODE_DECOMB_EEDI2 );
/* We can replace spatial_pred with this interpolation*/
uint8_t * eedi2_guess = NULL;
if (eedi2_mode)
{
eedi2_guess = &pv->eedi_full[DST2PF]->plane[plane].data[y*stride];
}
/* Decomb's cubic interpolation can only function when there are
three samples above and below, so regress to yadif's traditional
two-tap interpolation when filtering at the top and bottom edges. */
int vertical_edge = 0;
if( ( y < 3 ) || ( y > ( height - 4 ) ) )
vertical_edge = 1;
for( x = 0; x < width; x++)
{
/* Pixel above*/
int c = cur[-stride];
/* Temporal average: the current location in the adjacent fields */
int d = (prev2[0] + next2[0])>>1;
/* Pixel below */
int e = cur[+stride];
/* How the current pixel changes between the adjacent fields */
int temporal_diff0 = ABS(prev2[0] - next2[0]);
/* The average of how much the pixels above and below change from the frame before to now. */
int temporal_diff1 = ( ABS(prev[-stride] - cur[-stride]) + ABS(prev[+stride] - cur[+stride]) ) >> 1;
/* The average of how much the pixels above and below change from now to the next frame. */
int temporal_diff2 = ( ABS(next[-stride] - cur[-stride]) + ABS(next[+stride] - cur[+stride]) ) >> 1;
/* For the actual difference, use the largest of the previous average diffs. */
int diff = MAX3(temporal_diff0>>1, temporal_diff1, temporal_diff2);
int spatial_pred;
if( eedi2_mode )
{
/* Who needs yadif's spatial predictions when we can have EEDI2's? */
spatial_pred = eedi2_guess[0];
eedi2_guess++;
}
else // Yadif spatial interpolation
{
/* SAD of how the pixel-1, the pixel, and the pixel+1 change from the line above to below. */
int spatial_score = ABS(cur[-stride-1] - cur[+stride-1]) + ABS(cur[-stride]-cur[+stride]) +
ABS(cur[-stride+1] - cur[+stride+1]) - 1;
/* Spatial pred is either a bilinear or cubic vertical interpolation. */
if( ( pv->mode & MODE_DECOMB_CUBIC ) && !vertical_edge)
{
spatial_pred = cubic_interpolate_pixel( cur[-3*stride], cur[-stride], cur[+stride], cur[3*stride] );
}
else
{
spatial_pred = (c+e)>>1;
}
// YADIF_CHECK requires a margin to avoid invalid memory access.
// In MODE_DECOMB_CUBIC, margin needed is 2 + ABS(param).
// Else, the margin needed is 1 + ABS(param).
int margin = 2;
if (pv->mode & MODE_DECOMB_CUBIC)
margin = 3;
if (x >= margin && x <= width - (margin + 1))
{
YADIF_CHECK(-1)
if (x >= margin + 1 && x <= width - (margin + 2))
YADIF_CHECK(-2) }} }}
}
if (x >= margin && x <= width - (margin + 1))
{
YADIF_CHECK(1)
if (x >= margin + 1 && x <= width - (margin + 2))
YADIF_CHECK(2) }} }}
}
}
/* Temporally adjust the spatial prediction by
comparing against lines in the adjacent fields. */
int b = (prev2[-2*stride] + next2[-2*stride])>>1;
int f = (prev2[+2*stride] + next2[+2*stride])>>1;
/* Find the median value */
int max = MAX3(d-e, d-c, MIN(b-c, f-e));
int min = MIN3(d-e, d-c, MAX(b-c, f-e));
diff = MAX3( diff, min, -max );
if( spatial_pred > d + diff )
{
spatial_pred = d + diff;
}
else if( spatial_pred < d - diff )
{
spatial_pred = d - diff;
}
dst[0] = spatial_pred;
dst++;
cur++;
prev++;
next++;
prev2++;
next2++;
}
}
/*
* deinterlace this segment of all three planes in a single thread.
*/
static void yadif_decomb_filter_thread( void *thread_args_v )
{
yadif_arguments_t *yadif_work = NULL;
hb_filter_private_t * pv;
int segment, segment_start, segment_stop;
yadif_thread_arg_t *thread_args = thread_args_v;
filter_param_t filter;
filter.tap[0] = -1;
filter.tap[1] = 2;
filter.tap[2] = 6;
filter.tap[3] = 2;
filter.tap[4] = -1;
filter.normalize = 3;
pv = thread_args->pv;
segment = thread_args->segment;
hb_log("yadif thread started for segment %d", segment);
while (1)
{
/*
* Wait here until there is work to do.
*/
taskset_thread_wait4start( &pv->yadif_taskset, segment );
if( taskset_thread_stop( &pv->yadif_taskset, segment ) )
{
/*
* No more work to do, exit this thread.
*/
break;
}
yadif_work = &pv->yadif_arguments[segment];
/*
* Process all three planes, but only this segment of it.
*/
hb_buffer_t *dst;
int parity, tff, mode;
mode = pv->yadif_arguments[segment].mode;
dst = yadif_work->dst;
tff = yadif_work->tff;
parity = yadif_work->parity;
int pp;
for (pp = 0; pp < 3; pp++)
{
int yy;
int width = dst->plane[pp].width;
int stride = dst->plane[pp].stride;
int height = dst->plane[pp].height_stride;
int penultimate = height - 2;
segment_start = thread_args->segment_start[pp];
segment_stop = segment_start + thread_args->segment_height[pp];
// Filter parity lines
int start = parity ? (segment_start + 1) & ~1 : segment_start | 1;
uint8_t *dst2 = &dst->plane[pp].data[start * stride];
uint8_t *prev = &pv->ref[0]->plane[pp].data[start * stride];
uint8_t *cur = &pv->ref[1]->plane[pp].data[start * stride];
uint8_t *next = &pv->ref[2]->plane[pp].data[start * stride];
if (mode == MODE_DECOMB_BLEND)
{
/* These will be useful if we ever do temporal blending. */
for( yy = start; yy < segment_stop; yy += 2 )
{
/* This line gets blend filtered, not yadif filtered. */
blend_filter_line(&filter, dst2, cur, width, height, stride, yy);
dst2 += stride * 2;
cur += stride * 2;
}
}
else if (mode == MODE_DECOMB_CUBIC)
{
for( yy = start; yy < segment_stop; yy += 2 )
{
/* Just apply vertical cubic interpolation */
cubic_interpolate_line(dst2, cur, width, height, stride, yy);
dst2 += stride * 2;
cur += stride * 2;
}
}
else if (mode & MODE_DECOMB_YADIF)
{
for( yy = start; yy < segment_stop; yy += 2 )
{
if( yy > 1 && yy < penultimate )
{
// This isn't the top or bottom,
// proceed as normal to yadif
yadif_filter_line(pv, dst2, prev, cur, next, pp,
width, height, stride,
parity ^ tff, yy);
}
else
{
// parity == 0 (TFF), y1 = y0
// parity == 1 (BFF), y0 = y1
// parity == 0 (TFF), yu = yp
// parity == 1 (BFF), yp = yu
int yp = (yy ^ parity) * stride;
memcpy(dst2, &pv->ref[1]->plane[pp].data[yp], width);
}
dst2 += stride * 2;
prev += stride * 2;
cur += stride * 2;
next += stride * 2;
}
}
else
{
// No combing, copy frame
for( yy = start; yy < segment_stop; yy += 2 )
{
memcpy(dst2, cur, width);
dst2 += stride * 2;
cur += stride * 2;
}
}
// Copy unfiltered lines
start = !parity ? (segment_start + 1) & ~1 : segment_start | 1;
dst2 = &dst->plane[pp].data[start * stride];
prev = &pv->ref[0]->plane[pp].data[start * stride];
cur = &pv->ref[1]->plane[pp].data[start * stride];
next = &pv->ref[2]->plane[pp].data[start * stride];
for( yy = start; yy < segment_stop; yy += 2 )
{
memcpy(dst2, cur, width);
dst2 += stride * 2;
cur += stride * 2;
}
}
taskset_thread_complete( &pv->yadif_taskset, segment );
}
/*
* Finished this segment, let everyone know.
*/
taskset_thread_complete( &pv->yadif_taskset, segment );
}
static void yadif_filter( hb_filter_private_t * pv,
hb_buffer_t * dst,
int parity,
int tff)
{
/* If we're running comb detection, do it now, otherwise default to true. */
int is_combed = HB_COMB_HEAVY;
int mode = 0;
if (pv->mode & MODE_DECOMB_SELECTIVE)
{
is_combed = pv->ref[1]->s.combed;
}
// Pick a mode based on the comb detect state and selected decomb modes
if ((pv->mode & MODE_DECOMB_BLEND) && is_combed == HB_COMB_LIGHT )
{
mode = MODE_DECOMB_BLEND;
}
else if (is_combed != HB_COMB_NONE)
{
mode = pv->mode & ~MODE_DECOMB_SELECTIVE;
}
if (mode == MODE_DECOMB_BLEND)
{
pv->blended++;
}
else if (mode != 0)
{
pv->deinterlaced++;
}
else
{
pv->unfiltered++;
}
pv->frames++;
if (mode & MODE_DECOMB_EEDI2)
{
/* Generate an EEDI2 interpolation */
eedi2_planer( pv );
}
if (mode != 0)
{
if ((mode & MODE_DECOMB_EEDI2 ) && !(mode & MODE_DECOMB_YADIF))
{
// Just pass through the EEDI2 interpolation
int pp;
for( pp = 0; pp < 3; pp++ )
{
uint8_t * ref = pv->eedi_full[DST2PF]->plane[pp].data;
int ref_stride = pv->eedi_full[DST2PF]->plane[pp].stride;
uint8_t * dest = dst->plane[pp].data;
int width = dst->plane[pp].width;
int height = dst->plane[pp].height;
int stride = dst->plane[pp].stride;
int yy;
for( yy = 0; yy < height; yy++ )
{
memcpy(dest, ref, width);
dest += stride;
ref += ref_stride;
}
}
}
else
{
int segment;
for( segment = 0; segment < pv->cpu_count; segment++ )
{
/*
* Setup the work for this plane.
*/
pv->yadif_arguments[segment].parity = parity;
pv->yadif_arguments[segment].tff = tff;
pv->yadif_arguments[segment].dst = dst;
pv->yadif_arguments[segment].mode = mode;
}
/*
* Allow the taskset threads to make one pass over the data.
*/
taskset_cycle( &pv->yadif_taskset );
/*
* Entire frame is now deinterlaced.
*/
}
}
else
{
/* Just passing through... */
pv->yadif_arguments[0].mode = mode; // 0
hb_buffer_copy(dst, pv->ref[1]);
}
}
static int hb_decomb_init( hb_filter_object_t * filter,
hb_filter_init_t * init )
{
filter->private_data = calloc( 1, sizeof(struct hb_filter_private_s) );
hb_filter_private_t * pv = filter->private_data;
hb_buffer_list_clear(&pv->out_list);
pv->deinterlaced = 0;
pv->blended = 0;
pv->unfiltered = 0;
pv->frames = 0;
pv->yadif_ready = 0;
pv->mode = MODE_DECOMB_YADIF | MODE_DECOMB_BLEND |
MODE_DECOMB_CUBIC;
pv->magnitude_threshold = 10;
pv->variance_threshold = 20;
pv->laplacian_threshold = 20;
pv->dilation_threshold = 4;
pv->erosion_threshold = 2;
pv->noise_threshold = 50;
pv->maximum_search_distance = 24;
pv->post_processing = 1;
pv->parity = PARITY_DEFAULT;
if (filter->settings)
{
hb_value_t * dict = filter->settings;
// Get comb detection settings
hb_dict_extract_int(&pv->mode, dict, "mode");
// Get deinterlace settings
hb_dict_extract_int(&pv->parity, dict, "parity");
if (pv->mode & MODE_DECOMB_EEDI2)
{
hb_dict_extract_int(&pv->magnitude_threshold, dict,
"magnitude-thresh");
hb_dict_extract_int(&pv->variance_threshold, dict,
"variance-thresh");
hb_dict_extract_int(&pv->laplacian_threshold, dict,
"laplacian-thresh");
hb_dict_extract_int(&pv->dilation_threshold, dict,
"dilation-thresh");
hb_dict_extract_int(&pv->erosion_threshold, dict,
"erosion-thresh");
hb_dict_extract_int(&pv->noise_threshold, dict,
"noise-thresh");
hb_dict_extract_int(&pv->maximum_search_distance, dict,
"search-distance");
hb_dict_extract_int(&pv->post_processing, dict,
"postproc");
}
}
pv->cpu_count = hb_get_cpu_count();
// Make segment sizes an even number of lines
int height = hb_image_height(init->pix_fmt, init->geometry.height, 0);
// Each segment must begin on the even "parity" row.
// I.e. each segment of each plane must begin on an even row.
pv->segment_height[0] = (height / pv->cpu_count) & ~3;
pv->segment_height[1] = hb_image_height(init->pix_fmt, pv->segment_height[0], 1);
pv->segment_height[2] = hb_image_height(init->pix_fmt, pv->segment_height[0], 2);
int ii;
if( pv->mode & MODE_DECOMB_EEDI2 )
{