-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathrfc3579.txt
2579 lines (1756 loc) · 102 KB
/
rfc3579.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group B. Aboba
Request for Comments: 3579 Microsoft
Updates: 2869 P. Calhoun
Category: Informational Airespace
September 2003
RADIUS (Remote Authentication Dial In User Service)
Support For Extensible Authentication Protocol (EAP)
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
This document defines Remote Authentication Dial In User Service
(RADIUS) support for the Extensible Authentication Protocol (EAP), an
authentication framework which supports multiple authentication
mechanisms. In the proposed scheme, the Network Access Server (NAS)
forwards EAP packets to and from the RADIUS server, encapsulated
within EAP-Message attributes. This has the advantage of allowing
the NAS to support any EAP authentication method, without the need
for method-specific code, which resides on the RADIUS server. While
EAP was originally developed for use with PPP, it is now also in use
with IEEE 802.
This document updates RFC 2869.
Aboba & Calhoun Informational [Page 1]
RFC 3579 RADIUS & EAP September 2003
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Specification of Requirements. . . . . . . . . . . . . . 3
1.2. Terminology. . . . . . . . . . . . . . . . . . . . . . . 3
2. RADIUS Support for EAP . . . . . . . . . . . . . . . . . . . . 4
2.1. Protocol Overview. . . . . . . . . . . . . . . . . . . . 5
2.2. Invalid Packets. . . . . . . . . . . . . . . . . . . . . 9
2.3. Retransmission . . . . . . . . . . . . . . . . . . . . . 10
2.4. Fragmentation. . . . . . . . . . . . . . . . . . . . . . 10
2.5. Alternative uses . . . . . . . . . . . . . . . . . . . . 11
2.6. Usage Guidelines . . . . . . . . . . . . . . . . . . . . 11
3. Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1. EAP-Message. . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Message-Authenticator. . . . . . . . . . . . . . . . . . 16
3.3. Table of Attributes. . . . . . . . . . . . . . . . . . . 18
4. Security Considerations. . . . . . . . . . . . . . . . . . . . 19
4.1. Security Requirements. . . . . . . . . . . . . . . . . . 19
4.2. Security Protocol. . . . . . . . . . . . . . . . . . . . 20
4.3. Security Issues. . . . . . . . . . . . . . . . . . . . . 22
5. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 30
6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1. Normative References . . . . . . . . . . . . . . . . . . 30
6.2. Informative References . . . . . . . . . . . . . . . . . 32
Appendix A - Examples. . . . . . . . . . . . . . . . . . . . . . . 34
Appendix B - Change Log. . . . . . . . . . . . . . . . . . . . . . 43
Intellectual Property Statement. . . . . . . . . . . . . . . . . . 44
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 44
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 45
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 46
1. Introduction
The Remote Authentication Dial In User Service (RADIUS) is an
authentication, authorization and accounting protocol used to control
network access. RADIUS authentication and authorization is specified
in [RFC2865], and RADIUS accounting is specified in [RFC2866]; RADIUS
over IPv6 is specified in [RFC3162].
The Extensible Authentication Protocol (EAP), defined in [RFC2284],
is an authentication framework which supports multiple authentication
mechanisms. EAP may be used on dedicated links, switched circuits,
and wired as well as wireless links.
To date, EAP has been implemented with hosts and routers that connect
via switched circuits or dial-up lines using PPP [RFC1661]. It has
also been implemented with bridges supporting [IEEE802]. EAP
encapsulation on IEEE 802 wired media is described in [IEEE8021X].
Aboba & Calhoun Informational [Page 2]
RFC 3579 RADIUS & EAP September 2003
RADIUS attributes are comprised of variable length Type-Length-Value
3-tuples. New attribute values can be added without disturbing
existing implementations of the protocol. This specification
describes RADIUS attributes supporting the Extensible Authentication
Protocol (EAP): EAP-Message and Message-Authenticator. These
attributes now have extensive field experience. The purpose of this
document is to provide clarification and resolve interoperability
issues.
As noted in [RFC2865], a Network Access Server (NAS) that does not
implement a given service MUST NOT implement the RADIUS attributes
for that service. This implies that a NAS that is unable to offer
EAP service MUST NOT implement the RADIUS attributes for EAP. A NAS
MUST treat a RADIUS Access-Accept requesting an unavailable service
as an Access-Reject instead.
1.1. Specification of Requirements
In this document, several words are used to signify the requirements
of the specification. These words are often capitalized. The key
words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in [RFC2119].
1.2. Terminology
This document frequently uses the following terms:
authenticator
The end of the link requiring the authentication. Also
known as the Network Access Server (NAS) or RADIUS client.
Within IEEE 802.1X terminology, the term Authenticator is
used.
peer The other end of the point-to-point link (PPP),
point-to-point LAN segment (IEEE 802.1X) or wireless link,
which is being authenticated by the authenticator. In IEEE
802.1X, this end is known as the Supplicant.
authentication server
An authentication server is an entity that provides an
authentication service to an authenticator (NAS). This
service verifies from the credentials provided by the peer,
the claim of identity made by the peer; it also may provide
credentials allowing the peer to verify the identity of the
authentication server. Within this document it is assumed
that the NAS operates as a pass-through, forwarding EAP
packets between the RADIUS server and the EAP peer.
Aboba & Calhoun Informational [Page 3]
RFC 3579 RADIUS & EAP September 2003
Therefore the RADIUS server operates as an authentication
server.
silently discard
This means the implementation discards the packet without
further processing. The implementation SHOULD provide the
capability of logging the error, including the contents of
the silently discarded packet, and SHOULD record the event
in a statistics counter.
displayable message
This is interpreted to be a human readable string of
characters, and MUST NOT affect operation of the protocol.
The message encoding MUST follow the UTF-8 transformation
format [RFC2279].
Network Access Server (NAS)
The device providing access to the network. Also known as
the Authenticator (IEEE 802.1X or EAP terminology) or
RADIUS client.
service The NAS provides a service to the user, such as IEEE 802 or
PPP.
session Each service provided by the NAS to a peer constitutes a
session, with the beginning of the session defined as the
point where service is first provided and the end of the
session defined as the point where service is ended. A
peer may have multiple sessions in parallel or series if
the NAS supports that, with each session generating a
separate start and stop accounting record.
2. RADIUS Support for EAP
The Extensible Authentication Protocol (EAP), described in [RFC2284],
provides a standard mechanism for support of additional
authentication methods without the NAS to be upgraded to support each
new method. Through the use of EAP, support for a number of
authentication schemes may be added, including smart cards, Kerberos
[RFC1510], Public Key [RFC2716], One Time Passwords [RFC2284], and
others.
One of the advantages of the EAP architecture is its flexibility.
EAP is used to select a specific authentication mechanism. Rather
than requiring the NAS to be updated to support each new
authentication method, EAP permits the use of an authentication
server implementing authentication methods, with the NAS acting as a
pass-through for some or all methods and peers.
Aboba & Calhoun Informational [Page 4]
RFC 3579 RADIUS & EAP September 2003
A NAS MAY authenticate local peers while at the same time acting as a
pass-through for non-local peers and authentication methods it does
not implement locally. A NAS implementing this specification is not
required to use RADIUS to authenticate every peer. However, once the
NAS begins acting as a pass-through for a particular session, it can
no longer perform local authentication for that session.
In order to support EAP within RADIUS, two new attributes,
EAP-Message and Message-Authenticator, are introduced in this
document. This section describes how these new attributes may be
used for providing EAP support within RADIUS.
2.1. Protocol Overview
In RADIUS/EAP, RADIUS is used to shuttle RADIUS-encapsulated EAP
Packets between the NAS and an authentication server.
The authenticating peer and the NAS begin the EAP conversation by
negotiating use of EAP. Once EAP has been negotiated, the NAS SHOULD
send an initial EAP-Request message to the authenticating peer. This
will typically be an EAP-Request/Identity, although it could be an
EAP-Request for an authentication method (Types 4 and greater). A
NAS MAY be configured to initiate with a default authentication
method. This is useful in cases where the identity is determined by
another means (such as Called-Station-Id, Calling-Station-Id and/or
Originating-Line-Info); where a single authentication method is
required, which includes its own identity exchange; where identity
hiding is desired, so that the identity is not requested until after
a protected channel has been set up.
The peer replies with an EAP-Response. The NAS MAY determine from
the Response that it should proceed with local authentication.
Alternatively, the NAS MAY act as a pass-through, encapsulating the
EAP-Response within EAP-Message attribute(s) sent to the RADIUS
server within a RADIUS Access-Request packet. If the NAS sends an
EAP-Request/Identity message as the initial packet, the peer responds
with an EAP-Response/Identity. The NAS may determine that the peer
is local and proceed with local authentication. If no match is found
against the list of local users, the NAS encapsulates the
EAP-Response/Identity message within an EAP-Message attribute,
enclosed within an Access-Request packet.
On receiving a valid Access-Request packet containing EAP-Message
attribute(s), a RADIUS server compliant with this specification and
wishing to authenticate with EAP MUST respond with an
Access-Challenge packet containing EAP-Message attribute(s). If the
RADIUS server does not support EAP or does not wish to authenticate
with EAP, it MUST respond with an Access-Reject.
Aboba & Calhoun Informational [Page 5]
RFC 3579 RADIUS & EAP September 2003
EAP-Message attribute(s) encapsulate a single EAP packet which the
NAS decapsulates and passes on to the authenticating peer. The peer
then responds with an EAP-Response packet, which the NAS encapsulates
within an Access-Request containing EAP-Message attribute(s). EAP is
a 'lock step' protocol, so that other than the initial Request, a new
Request cannot be sent prior to receiving a valid Response.
The conversation continues until either a RADIUS Access-Reject or
Access-Accept packet is received from the RADIUS server. Reception
of a RADIUS Access-Reject packet MUST result in the NAS denying
access to the authenticating peer. A RADIUS Access-Accept packet
successfully ends the authentication phase. The NAS MUST NOT
"manufacture" a Success or Failure packet as the result of a timeout.
After a suitable number of timeouts have elapsed, the NAS SHOULD
instead end the EAP conversation.
Using RADIUS, the NAS can act as a pass-through for an EAP
conversation between the peer and authentication server, without
needing to implement the EAP method used between them. Where the NAS
initiates the conversation by sending an EAP-Request for an
authentication method, it may not be required that the NAS fully
implement the EAP method reflected in the initial EAP-Request.
Depending on the initial method, it may be sufficient for the NAS to
be configured with the initial packet to be sent to the peer, and for
the NAS to act as a pass-through for subsequent messages. Note that
since the NAS only encapsulates the EAP-Response in its initial
Access-Request, the initial EAP-Request within the authentication
method is not available to the RADIUS server. For the RADIUS server
to be able to continue the conversation, either the initial
EAP-Request is vestigial, so that the RADIUS server need not be aware
of it, or the relevant information from the initial EAP-Request (such
as a nonce) is reflected in the initial EAP-Response, so that the
RADIUS server can obtain it without having received the initial
EAP-Request.
Where the initial EAP-Request sent by the NAS is for an
authentication Type (4 or greater), the peer MAY respond with a Nak
indicating that it would prefer another authentication method that is
not implemented locally. In this case, the NAS SHOULD send
Access-Request encapsulating the received EAP-Response/Nak. This
provides the RADIUS server with a hint about the authentication
method(s) preferred by the peer, although it does not provide
information on the Type of the original Request. It also provides
the server with the Identifier used in the initial EAP-Request, so
that Identifier conflicts can be avoided.
Aboba & Calhoun Informational [Page 6]
RFC 3579 RADIUS & EAP September 2003
In order to evaluate whether the alternatives preferred by the
authenticating peer are allowed, the RADIUS server will typically
respond with an Access-Challenge containing EAP-Message attribute(s)
encapsulating an EAP-Request/Identity (Type 1). This allows the
RADIUS server to determine the peer identity, so as to be able to
retrieve the associated authentication policy. Alternatively, an
EAP-Request for an authentication method (Type 4 or greater) could be
sent. Since the RADIUS server may not be aware of the Type of the
initial EAP-Request, it is possible for the RADIUS server to choose
an unacceptable method, and for the peer to respond with another Nak.
In order to permit non-EAP aware RADIUS proxies to forward the
Access-Request packet, if the NAS initially sends an
EAP-Request/Identity message to the peer, the NAS MUST copy the
contents of the Type-Data field of the EAP-Response/Identity received
from the peer into the User-Name attribute and MUST include the
Type-Data field of the EAP-Response/Identity in the User-Name
attribute in every subsequent Access-Request. Since RADIUS proxies
are assumed to act as a pass-through, they cannot be expected to
parse an EAP-Response/Identity encapsulated within EAP-Message
attribute(s). If the NAS initially sends an EAP-Request for an
authentication method, and the peer identity cannot be determined
from the EAP-Response, then the User-Name attribute SHOULD be
determined by another means. As noted in [RFC2865] Section 5.6, it
is recommended that Access-Requests use the value of the
Calling-Station-Id as the value of the User-Name attribute.
Having the NAS send the initial EAP-Request packet has a number of
advantages:
[1] It saves a round trip between the NAS and RADIUS server.
[2] An Access-Request is only sent to the RADIUS server if the
authenticating peer sends an EAP-Response, confirming that it
supports EAP. In situations where peers may be EAP unaware,
initiating a RADIUS Access-Request on a "carrier sense" or
"media up" indication may result in many authentication
exchanges that cannot complete successfully. For example, on
wired networks [IEEE8021X] Supplicants typically do not initiate
the 802.1X conversation with an EAPOL-Start. Therefore an IEEE
802.1X-enabled bridge may not be able to determine whether the
peer supports EAP until it receives a Response to the initial
EAP-Request.
[3] It allows some peers to be authenticated locally.
Aboba & Calhoun Informational [Page 7]
RFC 3579 RADIUS & EAP September 2003
Although having the NAS send the initial EAP-Request packet has
substantial advantages, this technique cannot be universally
employed. There are circumstances in which the peer identity is
already known (such as when authentication and accounting is handled
based on Called-Station-Id, Calling-Station-Id and/or
Originating-Line-Info), but where the appropriate EAP method may vary
based on that identity.
Rather than sending an initial EAP-Request packet to the
authenticating peer, on detecting the presence of the peer, the NAS
MAY send an Access-Request packet to the RADIUS server containing an
EAP-Message attribute signifying EAP-Start. The RADIUS server will
typically respond with an Access-Challenge containing EAP-Message
attribute(s) encapsulating an EAP-Request/Identity (Type 1).
However, an EAP-Request for an authentication method (Type 4 or
greater) can also be sent by the server.
EAP-Start is indicated by sending an EAP-Message attribute with a
length of 2 (no data). The Calling-Station-Id SHOULD be included in
the User-Name attribute. This may result in a RADIUS Access-Request
being sent by the NAS to the RADIUS server without first confirming
that the peer supports EAP. Since this technique can result in a
large number of uncompleted RADIUS conversations, in situations where
EAP unaware peers are common, or where peer support for EAP cannot be
determined on initial contact (e.g. [IEEE8021X] Supplicants not
initiating the conversation with an EAPOL-Start) it SHOULD NOT be
employed by default.
For proxied RADIUS requests, there are two methods of processing. If
the domain is determined based on the Calling-Station-Id,
Called-Station-Id and/or Originating-Line-Info, the RADIUS server may
proxy the initial RADIUS Access-Request/EAP-Start. If the realm is
determined based on the peer identity, the local RADIUS server MUST
respond with a RADIUS Access-Challenge including an EAP-Message
attribute encapsulating an EAP-Request/Identity packet. The response
from the authenticating peer SHOULD be proxied to the final
authentication server.
If an Access-Request is sent to a RADIUS server which does not
support the EAP-Message attribute, then an Access-Reject MUST be sent
in response. On receiving an Access-Reject, the NAS MUST deny access
to the authenticating peer.
Aboba & Calhoun Informational [Page 8]
RFC 3579 RADIUS & EAP September 2003
2.2. Invalid Packets
While acting as a pass-through, the NAS MUST validate the EAP header
fields (Code, Identifier, Length) prior to forwarding an EAP packet
to or from the RADIUS server. On receiving an EAP packet from the
peer, the NAS checks the Code (2) and Length fields, and matches the
Identifier value against the current Identifier, supplied by the
RADIUS server in the most recently validated EAP-Request. On
receiving an EAP packet from the RADIUS server (encapsulated within
an Access-Challenge), the NAS checks the Code (1) and Length fields,
then updates the current Identifier value. Pending EAP Responses
that do not match the current Identifier value are silently discarded
by the NAS.
Since EAP method fields (Type, Type-Data) are typically not validated
by a NAS operating as a pass-through, despite these checks it is
possible for a NAS to forward an invalid EAP packet to or from the
RADIUS server. A RADIUS server receiving EAP-Message attribute(s) it
does not understand SHOULD make the determination of whether the
error is fatal or non-fatal based on the EAP Type. A RADIUS server
determining that a fatal error has occurred MUST send an
Access-Reject containing an EAP-Message attribute encapsulating
EAP-Failure.
A RADIUS server determining that a non-fatal error has occurred MAY
send an Access-Challenge to the NAS including EAP-Message
attribute(s) as well as an Error-Cause attribute [RFC3576] with value
202 (decimal), "Invalid EAP Packet (Ignored)". The Access-Challenge
SHOULD encapsulate within EAP-Message attribute(s) the most recently
sent EAP-Request packet (including the same Identifier value). On
receiving such an Access-Challenge, a NAS implementing previous
versions of this specification will decapsulate the EAP-Request and
send it to the peer, which will retransmit the EAP-Response.
A NAS compliant with this specification, on receiving an
Access-Challenge with an Error-Cause attribute of value 202 (decimal)
SHOULD discard the EAP-Response packet most recently transmitted to
the RADIUS server and check whether additional EAP-Response packets
have been received matching the current Identifier value. If so, a
new EAP-Response packet, if available, MUST be sent to the RADIUS
server within an Access-Request, and the EAP-Message attribute(s)
included within the Access-Challenge are silently discarded. If no
EAP-Response packet is available, then the EAP-Request encapsulated
within the Access-Challenge is sent to the peer, and the
retransmission timer is reset.
Aboba & Calhoun Informational [Page 9]
RFC 3579 RADIUS & EAP September 2003
In order to provide protection against Denial of Service (DoS)
attacks, it is advisable for the NAS to allocate a finite buffer for
EAP packets received from the peer, and to discard packets according
to an appropriate policy once that buffer has been exceeded. Also,
the RADIUS server is advised to permit only a modest number of
invalid EAP packets within a single session, prior to terminating the
session with an Access-Reject. By default a value of 5 invalid EAP
packets is recommended.
2.3. Retransmission
As noted in [RFC2284], if an EAP packet is lost in transit between
the authenticating peer and the NAS (or vice versa), the NAS will
retransmit.
It may be necessary to adjust retransmission strategies and
authentication timeouts in certain cases. For example, when a token
card is used additional time may be required to allow the user to
find the card and enter the token. Since the NAS will typically not
have knowledge of the required parameters, these need to be provided
by the RADIUS server. This can be accomplished by inclusion of
Session-Timeout attribute within the Access-Challenge packet.
If Session-Timeout is present in an Access-Challenge packet that also
contains an EAP-Message, the value of the Session-Timeout is used to
set the EAP retransmission timer for that EAP Request, and that
Request alone. Once the EAP-Request has been sent, the NAS sets the
retransmission timer, and if it expires without having received an
EAP-Response corresponding to the Request, then the EAP-Request is
retransmitted.
2.4. Fragmentation
Using the EAP-Message attribute, it is possible for the RADIUS server
to encapsulate an EAP packet that is larger than the MTU on the link
between the NAS and the peer. Since it is not possible for the
RADIUS server to use MTU discovery to ascertain the link MTU, the
Framed-MTU attribute may be included in an Access-Request packet
containing an EAP-Message attribute so as to provide the RADIUS
server with this information. A RADIUS server having received a
Framed-MTU attribute in an Access-Request packet MUST NOT send any
subsequent packet in this EAP conversation containing EAP-Message
attributes whose values, when concatenated, exceed the length
specified by the Framed-MTU value, taking the link type (specified by
the NAS-Port-Type attribute) into account. For example, as noted in
[RFC3580] Section 3.10, for a NAS-Port-Type value of IEEE 802.11, the
Aboba & Calhoun Informational [Page 10]
RFC 3579 RADIUS & EAP September 2003
RADIUS server may send an EAP packet as large as Framed-MTU minus
four (4) octets, taking into account the additional overhead for the
IEEE 802.1X Version (1), Type (1) and Body Length (2) fields.
2.5. Alternative Uses
Currently the conversation between security servers and the RADIUS
server is often proprietary because of lack of standardization. In
order to increase standardization and provide interoperability
between RADIUS vendors and security vendors, it is recommended that
RADIUS- encapsulated EAP be used for this conversation.
This has the advantage of allowing the RADIUS server to support EAP
without the need for authentication-specific code within the RADIUS
server. Authentication-specific code can then reside on a security
server instead.
In the case where RADIUS-encapsulated EAP is used in a conversation
between a RADIUS server and a security server, the security server
will typically return an Access-Accept message without inclusion of
the expected attributes currently returned in an Access-Accept. This
means that the RADIUS server MUST add these attributes prior to
sending an Access-Accept message to the NAS.
2.6. Usage Guidelines
2.6.1. Identifier Space
In EAP, each session has its own unique Identifier space. RADIUS
server implementations MUST be able to distinguish between EAP
packets with the same Identifier existing within distinct sessions,
originating on the same NAS. For this purpose, sessions can be
distinguished based on NAS and session identification attributes.
NAS identification attributes include NAS-Identifier,
NAS-IPv6-Address and NAS-IPv4-Address. Session identification
attributes include User-Name, NAS-Port, NAS-Port-Type, NAS-Port-Id,
Called-Station-Id, Calling-Station-Id and Originating-Line-Info.
2.6.2. Role Reversal
Since EAP is a peer-to-peer protocol, an independent and simultaneous
authentication may take place in the reverse direction. Both peers
may act as authenticators and authenticatees at the same time.
However, role reversal is not supported by this specification. A
RADIUS server MUST respond to an Access-Request encapsulating an
EAP-Request with an Access-Reject. In order to avoid retransmissions
Aboba & Calhoun Informational [Page 11]
RFC 3579 RADIUS & EAP September 2003
by the peer, the Access-Reject SHOULD include an EAP-Response/Nak
packet indicating no preferred method, encapsulated within
EAP-Message attribute(s).
2.6.3. Conflicting Messages
The NAS MUST make its access control decision based solely on the
RADIUS Packet Type (Access-Accept/Access-Reject). The access control
decision MUST NOT be based on the contents of the EAP packet
encapsulated in one or more EAP-Message attributes, if present.
Access-Accept packets SHOULD have only one EAP-Message attribute in
them, containing EAP Success; similarly, Access-Reject packets SHOULD
have only one EAP-Message attribute in them, containing EAP Failure.
Where the encapsulated EAP packet does not match the result implied
by the RADIUS Packet Type, the combination is likely to cause
confusion, because the NAS and peer will arrive at different
conclusions as to the outcome of the authentication.
For example, if the NAS receives an Access-Reject with an
encapsulated EAP Success, it will not grant access to the peer.
However, on receiving the EAP Success, the peer will be lead to
believe that it authenticated successfully.
If the NAS receives an Access-Accept with an encapsulated EAP
Failure, it will grant access to the peer. However, on receiving an
EAP Failure, the peer will be lead to believe that it failed
authentication. If no EAP-Message attribute is included within an
Access-Accept or Access-Reject, then the peer may not be informed as
to the outcome of the authentication, while the NAS will take action
to allow or deny access.
As described in [RFC2284], the EAP Success and Failure packets are
not acknowledged, and these packets terminate the EAP conversation.
As a result, if these packets are encapsulated within an
Access-Challenge, no response will be received, and therefore the NAS
will send no further Access-Requests to the RADIUS server for the
session. As a result, the RADIUS server will not indicate to the NAS
whether to allow or deny access, while the peer will be informed as
to the outcome of the authentication.
Aboba & Calhoun Informational [Page 12]
RFC 3579 RADIUS & EAP September 2003
To avoid these conflicts, the following combinations SHOULD NOT be
sent by a RADIUS server:
Access-Accept/EAP-Message/EAP Failure
Access-Accept/no EAP-Message attribute
Access-Accept/EAP-Start
Access-Reject/EAP-Message/EAP Success
Access-Reject/no EAP-Message attribute
Access-Reject/EAP-Start
Access-Challenge/EAP-Message/EAP Success
Access-Challenge/EAP-Message/EAP Failure
Access-Challenge/no EAP-Message attribute
Access-Challenge/EAP-Start
Since the responsibility for avoiding conflicts lies with the RADIUS
server, the NAS MUST NOT "manufacture" EAP packets in order to
correct contradictory messages that it receives. This behavior,
originally mandated within [IEEE8021X], will be deprecated in the
future.
2.6.4. Priority
A RADIUS Access-Accept or Access-Reject packet may contain EAP-
Message attribute(s). In order to ensure the correct processing of
RADIUS packets, the NAS MUST first process the attributes, including
the EAP-Message attribute(s), prior to processing the Accept/Reject
indication.
2.6.5. Displayable Messages
The Reply-Message attribute, defined in [RFC2865], Section 5.18,
indicates text which may be displayed to the peer. This is similar
in concept to EAP Notification, defined in [RFC2284]. When sending a
displayable message to a NAS during an EAP conversation, the RADIUS
server MUST encapsulate displayable messages within
EAP-Message/EAP-Request/Notification attribute(s). Reply-Message
attribute(s) MUST NOT be included in any RADIUS message containing an
EAP-Message attribute. An EAP-Message/EAP-Request/Notification
SHOULD NOT be included within an Access-Accept or Access-Reject
packet.
In some existing implementations, a NAS receiving Reply-Message
attribute(s) copies the Text field(s) into the Type-Data field of an
EAP-Request/Notification packet, fills in the Identifier field, and
sends this to the peer. However, several issues arise from this:
Aboba & Calhoun Informational [Page 13]
RFC 3579 RADIUS & EAP September 2003
[1] Unexpected Responses. On receiving an EAP-Request/Notification,
the peer will send an EAP-Response/Notification, and the NAS
will pass this on to the RADIUS server, encapsulated within
EAP-Message attribute(s). However, the RADIUS server may not be
expecting an Access-Request containing an
EAP-Message/EAP-Response/Notification attribute.
For example, consider what happens when a Reply-Message is
included within an Access-Accept or Access-Reject packet with no
EAP-Message attribute(s) present. If the value of the
Reply-Message attribute is copied into the Type-Data of an
EAP-Request/Notification and sent to the peer, this will result
in an Access-Request containing an
EAP-Message/EAP-Response/Notification attribute being sent by
the NAS to the RADIUS server. Since an Access-Accept or
Access-Reject packet terminates the RADIUS conversation, such an
Access-Request would not be expected, and could be interpreted
as the start of another conversation.
[2] Identifier conflicts. While the EAP-Request/Notification is an
EAP packet containing an Identifier field, the Reply-Message
attribute does not contain an Identifier field. As a result, a
NAS receiving a Reply-Message attribute and wishing to translate
this to an EAP-Request/Notification will need to choose an
Identifier value. It is possible that the chosen Identifier
value will conflict with a value chosen by the RADIUS server for
another packet within the EAP conversation, potentially causing
confusion between a new packet and a retransmission.
To avoid these problems, a NAS receiving a Reply-Message attribute
from the RADIUS server SHOULD silently discard the attribute, rather
than attempting to translate it to an EAP Notification Request.
3. Attributes
The NAS-Port or NAS-Port-Id attributes SHOULD be included by the NAS
in Access-Request packets, and either NAS-Identifier, NAS-IP-Address
or NAS-IPv6-Address attributes MUST be included. In order to permit
forwarding of the Access-Reply by EAP-unaware proxies, if a User-Name
attribute was included in an Access-Request, the RADIUS server MUST
include the User-Name attribute in subsequent Access-Accept packets.
Without the User-Name attribute, accounting and billing becomes
difficult to manage. The User-Name attribute within the Access-
Accept packet need not be the same as the User-Name attribute in the
Access-Request.
Aboba & Calhoun Informational [Page 14]
RFC 3579 RADIUS & EAP September 2003
3.1. EAP-Message
Description
This attribute encapsulates EAP [RFC2284] packets so as to allow
the NAS to authenticate peers via EAP without having to understand
the EAP method it is passing through.
The NAS places EAP messages received from the authenticating peer
into one or more EAP-Message attributes and forwards them to the
RADIUS server within an Access-Request message. If multiple
EAP-Message attributes are contained within an Access-Request or
Access-Challenge packet, they MUST be in order and they MUST be
consecutive attributes in the Access-Request or Access-Challenge
packet. The RADIUS server can return EAP-Message attributes in
Access-Challenge, Access-Accept and Access-Reject packets.
When RADIUS is used to enable EAP authentication, Access-Request,
Access-Challenge, Access-Accept, and Access-Reject packets SHOULD
contain one or more EAP-Message attributes. Where more than one
EAP-Message attribute is included, it is assumed that the
attributes are to be concatenated to form a single EAP packet.
Multiple EAP packets MUST NOT be encoded within EAP-Message
attributes contained within a single Access-Challenge,
Access-Accept, Access-Reject or Access-Request packet.
It is expected that EAP will be used to implement a variety of
authentication methods, including methods involving strong
cryptography. In order to prevent attackers from subverting EAP
by attacking RADIUS/EAP, (for example, by modifying EAP Success or
EAP Failure packets) it is necessary that RADIUS provide
per-packet authentication and integrity protection.
Therefore the Message-Authenticator attribute MUST be used to
protect all Access-Request, Access-Challenge, Access-Accept, and
Access-Reject packets containing an EAP-Message attribute.
Access-Request packets including EAP-Message attribute(s) without
a Message-Authenticator attribute SHOULD be silently discarded by
the RADIUS server. A RADIUS server supporting the EAP-Message
attribute MUST calculate the correct value of the
Message-Authenticator and MUST silently discard the packet if it
does not match the value sent. A RADIUS server not supporting the
EAP-Message attribute MUST return an Access-Reject if it receives
an Access-Request containing an EAP-Message attribute.
Aboba & Calhoun Informational [Page 15]
RFC 3579 RADIUS & EAP September 2003
Access-Challenge, Access-Accept, or Access-Reject packets
including EAP-Message attribute(s) without a Message-Authenticator
attribute SHOULD be silently discarded by the NAS. A NAS
supporting the EAP-Message attribute MUST calculate the correct
value of the Message-Authenticator and MUST silently discard the
packet if it does not match the value sent.
A summary of the EAP-Message attribute format is shown below. The
fields are transmitted from left to right.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | String...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
79 for EAP-Message
Length
>= 3
String
The String field contains an EAP packet, as defined in [RFC2284].
If multiple EAP-Message attributes are present in a packet their
values should be concatenated; this allows EAP packets longer than
253 octets to be transported by RADIUS.
3.2. Message-Authenticator
Description
This attribute MAY be used to authenticate and integrity-protect
Access-Requests in order to prevent spoofing. It MAY be used in
any Access-Request. It MUST be used in any Access-Request,
Access-Accept, Access-Reject or Access-Challenge that includes an
EAP-Message attribute.
A RADIUS server receiving an Access-Request with a
Message-Authenticator attribute present MUST calculate the correct
value of the Message-Authenticator and silently discard the packet
if it does not match the value sent.
Aboba & Calhoun Informational [Page 16]
RFC 3579 RADIUS & EAP September 2003
A RADIUS client receiving an Access-Accept, Access-Reject or
Access-Challenge with a Message-Authenticator attribute present
MUST calculate the correct value of the Message-Authenticator and
silently discard the packet if it does not match the value sent.
This attribute is not required in Access-Requests which include
the User-Password attribute, but is useful for preventing attacks
on other types of authentication. This attribute is intended to
thwart attempts by an attacker to setup a "rogue" NAS, and perform
online dictionary attacks against the RADIUS server. It does not
afford protection against "offline" attacks where the attacker
intercepts packets containing (for example) CHAP challenge and
response, and performs a dictionary attack against those packets
offline.
A summary of the Message-Authenticator attribute format is shown
below. The fields are transmitted from left to right.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | String...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
80 for Message-Authenticator
Length
18
String
When present in an Access-Request packet, Message-Authenticator is
an HMAC-MD5 [RFC2104] hash of the entire Access-Request packet,
including Type, ID, Length and Authenticator, using the shared
secret as the key, as follows.
Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
Request Authenticator, Attributes)
When the message integrity check is calculated the signature
string should be considered to be sixteen octets of zero.
Aboba & Calhoun Informational [Page 17]
RFC 3579 RADIUS & EAP September 2003
For Access-Challenge, Access-Accept, and Access-Reject packets,
the Message-Authenticator is calculated as follows, using the
Request-Authenticator from the Access-Request this packet is in
reply to:
Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
Request Authenticator, Attributes)
When the message integrity check is calculated the signature
string should be considered to be sixteen octets of zero. The
shared secret is used as the key for the HMAC-MD5 message
integrity check. The Message-Authenticator is calculated and
inserted in the packet before the Response Authenticator is
calculated.
3.3. Table of Attributes
The following table provides a guide to which attributes may be found
in packets including EAP-Message attribute(s), and in what quantity.
The EAP-Message and Message-Authenticator attributes specified in
this document MUST NOT be present in an Accounting-Request. If a
table entry is omitted, the values found in [RFC2548], [RFC2865],
[RFC2868], [RFC2869] and [RFC3162] should be assumed.
Request Accept Reject Challenge # Attribute
0-1 0-1 0 0 1 User-Name
0 0 0 0 2 User-Password [Note 1]
0 0 0 0 3 CHAP-Password [Note 1]
0 0 0 0 18 Reply-Message
0 0 0 0 60 CHAP-Challenge
0 0 0 0 70 ARAP-Password [Note 1]
0 0 0 0 75 Password-Retry
1+ 1+ 1+ 1+ 79 EAP-Message [Note 1]
1 1 1 1 80 Message-Authenticator [Note 1]
0-1 0 0 0 94 Originating-Line-Info [Note 3]
0 0 0-1 0-1 101 Error-Cause [Note 2]
Request Accept Reject Challenge # Attribute
[Note 1] An Access-Request that contains either a User-Password or
CHAP-Password or ARAP-Password or one or more EAP-Message attributes
MUST NOT contain more than one type of those four attributes. If it
does not contain any of those four attributes, it SHOULD contain a