forked from mothur/mothur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalignnode.cpp
executable file
·257 lines (199 loc) · 8.67 KB
/
alignnode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
* alignNode.cpp
* bayesian
*
* Created by Pat Schloss on 10/11/11.
* Copyright 2011 Patrick D. Schloss. All rights reserved.
*
*/
#include "alignnode.h"
#include "taxonomynode.h"
#include "bayesian.h"
/**************************************************************************************************/
AlignNode::AlignNode(string n, int l): TaxonomyNode(n, l){
alignLength = 0;
}
/**************************************************************************************************/
void AlignNode::printTheta(){
try {
m->mothurOut("A:\t"); for(int i=0;i<alignLength;i++){ m->mothurOut(toString(theta[i].A)+ '\t'); } m->mothurOutEndLine();
m->mothurOut("T:\t"); for(int i=0;i<alignLength;i++){ m->mothurOut(toString(theta[i].T)+ '\t'); } m->mothurOutEndLine();
m->mothurOut("G:\t"); for(int i=0;i<alignLength;i++){ m->mothurOut(toString(theta[i].G)+ '\t'); } m->mothurOutEndLine();
m->mothurOut("C:\t"); for(int i=0;i<alignLength;i++){ m->mothurOut(toString(theta[i].C)+ '\t'); } m->mothurOutEndLine();
m->mothurOut("I:\t"); for(int i=0;i<alignLength;i++){ m->mothurOut(toString(theta[i].gap)+ '\t'); } m->mothurOutEndLine();
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "printTheta");
exit(1);
}
}
/**************************************************************************************************/
int AlignNode::loadSequence(string& sequence){
try {
alignLength = (int)sequence.length(); // this function runs through the alignment and increments the frequency
// of each base for a particular taxon. we are building the thetas
if(theta.size() == 0){
theta.resize(alignLength);
columnCounts.resize(alignLength, 0);
}
for(int i=0;i<alignLength;i++){
if (m->control_pressed) { return 0; }
char base = sequence[i];
if(base == 'A') { theta[i].A++; columnCounts[i]++; } // our thetas will be alignLength x 5
else if(base == 'T'){ theta[i].T++; columnCounts[i]++; } // and we ignore any position that has
else if(base == 'G'){ theta[i].G++; columnCounts[i]++; } // an ambiguous base call
else if(base == 'C'){ theta[i].C++; columnCounts[i]++; }
else if(base == '-'){ theta[i].gap++; columnCounts[i]++; }
else if(base == 'U'){ theta[i].T++; columnCounts[i]++; }
}
numSeqs++;
return 0;
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "loadSequence");
exit(1);
}
}
/**************************************************************************************************/
int AlignNode::checkTheta(){
try {
for(int i=0;i<alignLength;i++){
if (m->control_pressed) { return 0; }
if(theta[i].gap == columnCounts[i]){
columnCounts[i] = 0;
}
// else{
// int maxCount = theta[i].A;
//
// if(theta[i].T > maxCount) { maxCount = theta[i].T; }
// if(theta[i].G > maxCount) { maxCount = theta[i].T; }
// if(theta[i].C > maxCount) { maxCount = theta[i].T; }
// if(theta[i].gap > maxCount) { maxCount = theta[i].T; }
//
// if(maxCount < columnCounts[i] * 0.25){// || maxCount == columnCounts[i]){ //remove any column where the maximum frequency is <50%
// columnCounts[i] = 0;
// }
// }
}
return 0;
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "checkTheta");
exit(1);
}
}
/**************************************************************************************************/
int AlignNode::addThetas(vector<thetaAlign> newTheta, int newNumSeqs){
try {
if(alignLength == 0){
alignLength = (int)newTheta.size();
theta.resize(alignLength);
columnCounts.resize(alignLength);
}
for(int i=0;i<alignLength;i++){
if (m->control_pressed) { return 0; }
theta[i].A += newTheta[i].A; columnCounts[i] += newTheta[i].A;
theta[i].T += newTheta[i].T; columnCounts[i] += newTheta[i].T;
theta[i].G += newTheta[i].G; columnCounts[i] += newTheta[i].G;
theta[i].C += newTheta[i].C; columnCounts[i] += newTheta[i].C;
theta[i].gap += newTheta[i].gap; columnCounts[i] += newTheta[i].gap;
}
numSeqs += newNumSeqs;
return 0;
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "addThetas");
exit(1);
}
}
/**************************************************************************************************/
double AlignNode::getSimToConsensus(string& query){
try {
double similarity = 0;
int length = 0;
for(int i=0;i<alignLength;i++){
if (m->control_pressed) { return similarity; }
char base = query[i];
if(base != '.' && base != 'N' && columnCounts[i] != 0){
double fraction = 0;
if(base == 'A'){
fraction = (int) theta[i].A / (double) columnCounts[i];
similarity += fraction;
length++;
}
else if(base == 'T'){
fraction = (int) theta[i].T / (double) columnCounts[i];
similarity += fraction;
length++;
}
else if(base == 'G'){
fraction = (int) theta[i].G / (double) columnCounts[i];
similarity += fraction;
length++;
}
else if(base == 'C'){
fraction = (int) theta[i].C / (double) columnCounts[i];
similarity += fraction;
length++;
}
else if(base == '-'){
fraction = (int) theta[i].gap / (double) columnCounts[i];
similarity += fraction;
length++;
}
}
}
if(length != 0){
similarity /= double(length);
}
else {
similarity = 0;
}
return similarity;
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "getSimToConsensus");
exit(1);
}
}
/**************************************************************************************************/
double AlignNode::getPxGivenkj_D_j(string& query){ //P(x | k_j, D, j)
try {
double PxGivenkj_D_j = 0;
int count = 0;
double alpha = 1 / (double)totalSeqs; //flat prior
for(int s=0;s<alignLength;s++){
if (m->control_pressed) { return PxGivenkj_D_j; }
char base = query[s];
thetaAlign thetaS = theta[s];
if(base != '.' && base != 'N' && columnCounts[s] != 0){
double Nkj_s = (double)columnCounts[s];
double nkj_si = 0;
if(base == 'A') { nkj_si = (double)thetaS.A; }
else if(base == 'T'){ nkj_si = (double)thetaS.T; }
else if(base == 'G'){ nkj_si = (double)thetaS.G; }
else if(base == 'C'){ nkj_si = (double)thetaS.C; }
else if(base == '-'){ nkj_si = (double)thetaS.gap; }
else if(base == 'U'){ nkj_si = (double)thetaS.T; }
// double alpha = pow(0.2, double(Nkj_s)) + 0.0001; //need to make 1e-4 a variable in future; this is the non-flat prior
// if(columnCounts[s] != nkj_si){ //deal only with segregating sites...
double numerator = nkj_si + alpha;
double denomenator = Nkj_s + 5.0 * alpha;
PxGivenkj_D_j += log(numerator) - log(denomenator);
count++;
// }
}
if(base != '.' && columnCounts[s] == 0 && thetaS.gap == 0){
count = 0;
break;
}
}
if(count == 0){ PxGivenkj_D_j = -1e10; }
return PxGivenkj_D_j;
}
catch(exception& e) {
m->errorOut(e, "AlignNode", "getPxGivenkj_D_j");
exit(1);
}
}
/**************************************************************************************************/