forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
draw_net.py
executable file
·62 lines (52 loc) · 2.2 KB
/
draw_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
"""
Draw a graph of the net architecture.
"""
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from google.protobuf import text_format
import caffe
import caffe.draw
from caffe.proto import caffe_pb2
def parse_args():
"""Parse input arguments
"""
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('input_net_proto_file',
help='Input network prototxt file')
parser.add_argument('output_image_file',
help='Output image file')
parser.add_argument('--rankdir',
help=('One of TB (top-bottom, i.e., vertical), '
'RL (right-left, i.e., horizontal), or another '
'valid dot option; see '
'http://www.graphviz.org/doc/info/'
'attrs.html#k:rankdir'),
default='LR')
parser.add_argument('--phase',
help=('Which network phase to draw: can be TRAIN, '
'TEST, or ALL. If ALL, then all layers are drawn '
'regardless of phase.'),
default="ALL")
parser.add_argument('--display_lrm', action='store_true',
help=('Use this flag to visualize the learning rate '
'multiplier, when non-zero, for the learning '
'layers (Convolution, Deconvolution, InnerProduct).'))
args = parser.parse_args()
return args
def main():
args = parse_args()
net = caffe_pb2.NetParameter()
text_format.Merge(open(args.input_net_proto_file).read(), net)
print('Drawing net to %s' % args.output_image_file)
phase=None;
if args.phase == "TRAIN":
phase = caffe.TRAIN
elif args.phase == "TEST":
phase = caffe.TEST
elif args.phase != "ALL":
raise ValueError("Unknown phase: " + args.phase)
caffe.draw.draw_net_to_file(net, args.output_image_file, args.rankdir,
phase, args.display_lrm)
if __name__ == '__main__':
main()