31 Streptococcus mutans genomes reconstructed from metagenomic data
15 Streptococcus sobrinus genomes reconstructed from metagenomic data
Python Scripts | |
---|---|
1. SPARSE_ml.py | Fit machine learning models on SPARSE results |
2. SPARSE_curve.py | Calculate rarefaction curve on SPARSE results |
3. SPARSE_dist.py | Calculate Euclidian distances of samples and species |
Source Files | |
---|---|
1. SPARSE.species.profile | SPARSE results |
2. SPARSE.samples | Oral sources of samples |
Batch workflow | |
---|---|
1. requirements.txt | Required python libraries |
2. commands.bash | All the commands to generate results |
Outputs | |
---|---|
1. SPARSE.species.profile.SVM | Support Vector Machine results. Figure 2 |
2. SPARSE.species.profile.PCA | PCA results. Figure S1 |
3. SPARSE.species.profile.UMAP | UMAP & K-mean clustering. Figures 1A & S1 |
4. SPARSE.species.profile.curves | Rarefaction curves. Figure 5 |
5. SPARSE.species.profile.sample.dist | Abundance distances of samples for NJ tree. Figure 1B |
6. SPARSE.species.profile.taxon.dist | Abundance distances of species for NJ tree. Figures 4 & S2 |
- Unpack TAR ball:
tar vxzf "Dataset S3.tar.gz"
- Install required libraries:
pip install -r requirements.txt
- Get all outputs:
bash commands.bash
python SPARSE_ml.py --help
python SPARSE_curve.py --help
python SPARSE_dist.py --help
To obtain detailed help on the scripts.