English | 简体中文
Use paddle in R.
Download Dockerfile
, run
docker build -t paddle-rapi:latest .
First, make sure Python
is installed, assuming that the path is /opt/python3.8
.
python -m pip install paddlepaddle # CPU version
python -m pip install paddlepaddle-gpu # GPU version
Install the R libraries needed to use paddle.
install.packages("reticulate") # call Python in R
install.packages("RcppCNPy") # use numpy.ndarray in R
First, load PaddlePaddle in R.
library(reticulate)
library(RcppCNPy)
use_python("/opt/python3.8/bin/python3.8")
paddle <- import("paddle.base.core")
Create an AnalysisConfig
, which is the configuration of the paddle inference engine.
config <- paddle$AnalysisConfig("")
Set model path.
config$set_model("model/__model__", "model/__params__")
Use zero copy inference.
config$switch_use_feed_fetch_ops(FALSE)
config$switch_specify_input_names(TRUE)
Other configuration options and descriptions are as fallows.
config$enable_profile() # turn on inference profile
config$enable_use_gpu(gpu_memory_mb, gpu_id) # use GPU
config$disable_gpu() # disable GPU
config$gpu_device_id() # get GPU id
config$switch_ir_optim(TRUE) # turn on IR optimize(default is TRUE)
config$enable_tensorrt_engine(workspace_size,
max_batch_size,
min_subgraph_size,
paddle$AnalysisConfig$Precision$FLOAT32,
use_static,
use_calib_mode
) # use TensorRT
config$enable_mkldnn() # use MKLDNN
config$delete_pass(pass_name) # delete IR pass
Create inference engine.
predictor <- paddle$create_paddle_predictor(config)
Get input tensor(assume single input), and set input data
input_names <- predictor$get_input_names()
input_tensor <- predictor$get_input_tensor(input_names[1])
input_shape <- as.integer(c(1, 3, 300, 300)) # shape has integer type
input_data <- np_array(data, dtype="float32")$reshape(input_shape)
input_tensor$copy_from_cpu(input_data)
Run inference.
predictor$zero_copy_run()
Get output tensor(assume single output).
output_names <- predictor$get_output_names()
output_tensor <- predictor$get_output_tensor(output_names[1])
Parse output data, and convert to numpy.ndarray
output_data <- output_tensor$copy_to_cpu()
output_data <- np_array(output_data)
Click to see the full R mobilenet example and the corresponding Python mobilenet example the above. For more examples, see R inference example.
Download Dockerfile and example to local directory, and build docker image
docker build -t paddle-rapi:latest .
Create and enter container
docker run --rm -it paddle-rapi:latest bash
Run the following command in th container
cd example
chmod +x mobilenet.r
./mobilenet.r