forked from intel/handwritten-chinese-ocr-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·363 lines (314 loc) · 14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""
Apache v2 license
Copyright (C) <2018-2021> Intel Corporation
SPDX-License-Identifier: Apache-2.0
"""
import argparse
import os
import sys
import time
import cv2
import numpy as np
import editdistance
import torch
from utils.dataset import AlignCollate, ImageDataset, NormalizePAD
from utils.ctc_codec import ctc_codec
from models.handwritten_ctr_model import hctr_model
from main import AverageMeter
def build_argparser():
parser = argparse.ArgumentParser(description='PyTorch OCR textline Testing')
args = parser.add_argument_group('Options')
args.add_argument('-m', '--model-type', dest='model_type',
type=str, required=True, choices=['hctr'],
help='target model for different languages and scenarios')
args.add_argument('-f', '--model-file', dest='model_file',
type=str, metavar='PATH', required=True,
help='path to best model file')
args.add_argument('-i', '--input', dest='input',
type=str, metavar='PATH', required=True,
help='path to input image or testset')
args.add_argument('-b', '--batch-size', dest='batch_size',
type=int, metavar='N', default=1,
help='mini-batch size')
args.add_argument('--gpu', type=int, default=None,
help='GPU id to use.')
args.add_argument('-bm', '--benchmark-mode', dest='benchmark_mode',
action='store_true',
help='enable to benchmark on input testset.')
args.add_argument('-dm', '--decode-method', dest='decode_method',
type=str, default='beam-search',
choices=['greedy-search', 'beam-search'],
help='method to decode the CTC output.')
args.add_argument('-ss', '--skip-search', dest='skip_search',
action='store_true',
help='whether skip high confidence characters ' +
'when using beam search.')
args.add_argument('-kp', '--kenlm-path', dest='kenlm_path',
type=str, metavar='PATH',
help='ngram model for scoring in beam search.')
args.add_argument('-utp', '--use-tfm-pred', dest='use_tfm_pred',
action='store_true',
help='use transformer for candidates prediction.')
args.add_argument('-tp', '--transformer-path', dest='tfm_path',
type=str, metavar='DIR',
help='path to transformer language model.')
args.add_argument('-uts', '--use-tfm-score', dest='use_tfm_score',
action='store_true',
help='use transformer for scoring in beam search.')
args.add_argument('-uov', '--use-openvino', dest='use_openvino',
action='store_true',
help='use openvino to do transformer ' +
'model inference during beam search.')
args.add_argument('-bs', '--beam-size', dest='beam_size',
type=int, default=10,
help='beam size for beam search.')
args.add_argument('-sd', '--search-depth', dest='search_depth',
type=int, default=10,
help='search depth (top-k) for beam search.')
args.add_argument('-lp', '--lm-panelty', dest='lm_panelty',
type=float, default=0.8,
help='panelty of language model for sentences scoring.')
args.add_argument('-lb', '--len-bonus', dest='len_bonus',
type=float, default=4.8,
help='length bonus for sentences scoring.')
args.add_argument('-jw', '--workers',
type=int, metavar='N', default=4,
help='number of data loading workers in benchmark mode.')
args.add_argument('-tv', '--test-verbose', dest='test_verbose',
action='store_true',
help='print result during model testing.')
args.add_argument('-pf', '--print-freq', dest='print_freq',
type=int, metavar='N', default=100,
help='log print frequency during model testing.')
###########################################################################
# subgroup of parameters for hyper-param tunning only.
args.add_argument('-gs', '--grid-search', action='store_true',
help='use grid search for lm_panelty and len_bonus.')
args.add_argument('-al', '--alpha-lower', type=float, default=0.7,
help='alpha(lm_panelty) lower bound')
args.add_argument('-au', '--alpha-upper', type=float, default=1.1,
help='alpha(lm_panelty) upper bound')
args.add_argument('-ac', '--alpha-count', type=int, default=10,
help='alpha(lm_panelty) count')
args.add_argument('-bl', '--beta-lower', type=float, default=4.2,
help='beta(len_bonus) lower bound')
args.add_argument('-bu', '--beta-upper', type=float, default=6.6,
help='beta(len_bonus) upper bound')
args.add_argument('-bc', '--beta-count', type=int, default=25,
help='beta(len_bonus) count')
return parser
def test(args):
if os.path.isfile(args.model_file) is False:
raise FileNotFoundError(
'No model file found at: {}'.format(args.model_file)
)
if (os.path.isdir(args.input) or os.path.isfile(args.input)) is False:
raise FileNotFoundError(
'Input is not found, expected file or folder.'
)
if args.gpu is not None:
print('Use GPU: {} for testing'.format(args.gpu))
# create model specific info
model, img_height, characters = get_model_info(args.model_type)
# depends on using ctc or attension
codec = ctc_codec(characters)
if args.decode_method == 'beam-search':
codec.set_beam_search(args.skip_search,
ngram_path=args.kenlm_path,
tfm_path=args.tfm_path,
lm_panelty=args.lm_panelty,
len_bonus=args.len_bonus,
beam_size=args.beam_size,
search_depth=args.search_depth,
use_tfm_score=args.use_tfm_score,
use_tfm_pred=args.use_tfm_pred,
use_openvino=args.use_openvino
)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# Use CPU for testing
model = model.cpu()
# Load pre-trained model parameters
print('=> loading model file: {}'.format(args.model_file))
checkpoint = torch.load(args.model_file, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])
# Switch to evaluate mode
model.eval()
if args.benchmark_mode == True:
return benchmark(model, codec, args)
# Preprocess the input images if needed
input_list = preprocess_input(args.input, img_height)
batch_num = len(input_list) // args.batch_size
with torch.no_grad():
for i in range(batch_num):
if i % 1 == 0:
print('batch {} is being processed...'.format(i))
maxW = 0
batch_images = input_list[
i * args.batch_size: (i+1) * args.batch_size
]
padded_images = []
for image in batch_images:
h, w = image.shape
if w > maxW:
maxW = w
for image in batch_images:
image = image[:, :, None]
transform = NormalizePAD((1, img_height, maxW))
padded_images.append(transform(image))
batch_image_tensors = torch.cat(
[t.unsqueeze(0) for t in padded_images], 0
)
# Compute and decode output
start_time = time.time()
if args.gpu is not None:
preds = model(batch_image_tensors.cuda()) # BDHW -> WBD
else:
preds = model(batch_image_tensors)
result = codec.decode(preds.cpu().detach().numpy())
time_consumed = time.time() - start_time
print('max_width: {}, throughput: {} ms/img'.format(maxW,
(time_consumed / args.batch_size) * 1000))
print('predicted results: {}'.format(result))
return None
def preprocess_input(input, height):
img_list = []
def read_resize_image(img_path, height):
src = cv2.imread(img_path)
if len(src.shape) == 3:
src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
ratio = float(src.shape[1]) / float(src.shape[0])
th = height
tw = int(th * ratio)
rsz = cv2.resize(src, (tw, th),
fx=0, fy=0, interpolation=cv2.INTER_AREA)
return rsz
if os.path.isfile(input):
img_data = read_resize_image(input, height)
img_list.append(img_data)
else: # folder
for img_name in os.listdir(input):
img_path = os.path.join(input, img_name)
img_data = read_resize_image(img_path, height)
img_list.append(img_data)
return img_list
def benchmark(model, codec, args):
if not os.path.isdir(args.input):
raise AssertionError(
'Input should be a folder under benchmark mode.'
)
AlignCollate_test = AlignCollate(imgH=model.img_height, PAD=model.PAD)
test_dataset = ImageDataset(data_path=args.input,
img_shape=(1, model.img_height),
phase='test',
batch_size=args.batch_size)
data_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
collate_fn=AlignCollate_test,
pin_memory=True)
batch_time = AverageMeter()
data_time = AverageMeter()
err_rate = AverageMeter()
nchars = 0
total = 0
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(data_loader): # test/val_loader
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
preds = model(input)
result = codec.decode(preds.cpu().detach().numpy())
for j, (pre, tru) in enumerate(zip(result, target)):
if args.test_verbose:
print('TEST [{0}/{1}]'.format(j, i))
print('TEST PRE {}'.format(pre))
print('TEST TRU {}'.format(tru))
if not isinstance(pre, str):
raise AssertionError(pre)
if not isinstance(tru, str):
raise AssertionError(tru)
errs = editdistance.eval(pre, tru)
total += errs
nchars += len(tru)
if nchars == 0:
raise ValueError(
'Number of label characters should not be 0.'
)
# compute character error rate
CER = total * 1.0 / nchars
err_rate.update(CER, input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
if i % args.print_freq == 0:
print('TEST: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Err {err_rate.val:.4f} ({err_rate.avg:.4f})\t'
.format(
i, len(data_loader), batch_time=batch_time,
data_time=data_time, err_rate=err_rate
)
)
# reset time for next iteration
end = time.time()
print('Total Test CER: {}'.format(CER))
return CER
def get_model_info(model_type):
'''Get specific model information: model, characters'''
model = None
characters = ''
chars_list_file = ''
if model_type == 'hctr':
model = hctr_model()
chars_list_file = \
'./data/handwritten_ctr_data/chars_list.txt'
else:
raise ValueError(
'Model type: {} not supported'.format(model_type)
)
with open(chars_list_file, 'r') as f:
for line in f.readlines():
line = line.strip('\n')
characters += line
return model, model.img_height, characters
if __name__ == '__main__':
args = build_argparser().parse_args()
if args.grid_search == False:
test(args)
else:
# use grid search to find the best lm_panelty and len_bonus
# recommendation for short execution time of each iteration
# small set of validation data (e.g. 10%)
# small beam size and search depth (e.g. 5)
# disable use_tfm_pred
if not (args.benchmark_mode == True):
raise AssertionError(args.benchmark_mode)
alpha = np.linspace(args.alpha_lower,
args.alpha_upper, args.alpha_count)
beta = np.linspace(args.beta_lower,
args.beta_upper, args.beta_count)
min_cer = 1.0
min_params = (0, 0)
for a in alpha:
for b in beta:
print('searching with a:{}, b:{}, '
'min params:{}, min cer:{}'
.format(a, b, min_params, min_cer)
)
args.lm_panelty = a
args.len_bonus = b
cer = test(args)
if cer < min_cer:
min_cer = cer
min_params = (a, b)
print('min params:{}, min cer: {}'
.format(min_params, min_cer)
)