forked from whai362/PSENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
icdar2015_loader.py
240 lines (197 loc) · 7.95 KB
/
icdar2015_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# dataloader add 3.0 scale
# dataloader add filer text
import numpy as np
from PIL import Image
from torch.utils import data
import util
import cv2
import random
import torchvision.transforms as transforms
import torch
import pyclipper
import Polygon as plg
ic15_root_dir = './data/ICDAR2015/Challenge4/'
ic15_train_data_dir = ic15_root_dir + 'ch4_training_images/'
ic15_train_gt_dir = ic15_root_dir + 'ch4_training_localization_transcription_gt/'
ic15_test_data_dir = ic15_root_dir + 'ch4_test_images/'
ic15_test_gt_dir = ic15_root_dir + 'ch4_test_localization_transcription_gt/'
random.seed(123456)
def get_img(img_path):
try:
img = cv2.imread(img_path)
img = img[:, :, [2, 1, 0]]
except Exception as e:
print img_path
raise
return img
def get_bboxes(img, gt_path):
h, w = img.shape[0:2]
lines = util.io.read_lines(gt_path)
bboxes = []
tags = []
for line in lines:
line = util.str.remove_all(line, '\xef\xbb\xbf')
gt = util.str.split(line, ',')
if gt[-1][0] == '#':
tags.append(False)
else:
tags.append(True)
box = [int(gt[i]) for i in range(8)]
box = np.asarray(box) / ([w * 1.0, h * 1.0] * 4)
bboxes.append(box)
return np.array(bboxes), tags
def random_horizontal_flip(imgs):
if random.random() < 0.5:
for i in range(len(imgs)):
imgs[i] = np.flip(imgs[i], axis=1).copy()
return imgs
def random_rotate(imgs):
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
for i in range(len(imgs)):
img = imgs[i]
w, h = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (h, w))
imgs[i] = img_rotation
return imgs
def scale(img, long_size=2240):
h, w = img.shape[0:2]
scale = long_size * 1.0 / max(h, w)
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
return img
def random_scale(img, min_size):
h, w = img.shape[0:2]
if max(h, w) > 1280:
scale = 1280.0 / max(h, w)
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
h, w = img.shape[0:2]
random_scale = np.array([0.5, 1.0, 2.0, 3.0])
scale = np.random.choice(random_scale)
if min(h, w) * scale <= min_size:
scale = (min_size + 10) * 1.0 / min(h, w)
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
return img
def random_crop(imgs, img_size):
h, w = imgs[0].shape[0:2]
th, tw = img_size
if w == tw and h == th:
return imgs
if random.random() > 3.0 / 8.0 and np.max(imgs[1]) > 0:
tl = np.min(np.where(imgs[1] > 0), axis = 1) - img_size
tl[tl < 0] = 0
br = np.max(np.where(imgs[1] > 0), axis = 1) - img_size
br[br < 0] = 0
br[0] = min(br[0], h - th)
br[1] = min(br[1], w - tw)
i = random.randint(tl[0], br[0])
j = random.randint(tl[1], br[1])
else:
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
# return i, j, th, tw
for idx in range(len(imgs)):
if len(imgs[idx].shape) == 3:
imgs[idx] = imgs[idx][i:i + th, j:j + tw, :]
else:
imgs[idx] = imgs[idx][i:i + th, j:j + tw]
return imgs
def dist(a, b):
return np.sqrt(np.sum((a - b) ** 2))
def perimeter(bbox):
peri = 0.0
for i in range(bbox.shape[0]):
peri += dist(bbox[i], bbox[(i + 1) % bbox.shape[0]])
return peri
def shrink(bboxes, rate, max_shr=20):
rate = rate * rate
shrinked_bboxes = []
for bbox in bboxes:
area = plg.Polygon(bbox).area()
peri = perimeter(bbox)
pco = pyclipper.PyclipperOffset()
pco.AddPath(bbox, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
offset = min((int)(area * (1 - rate) / (peri + 0.001) + 0.5), max_shr)
shrinked_bbox = pco.Execute(-offset)
if len(shrinked_bbox) == 0:
shrinked_bboxes.append(bbox)
continue
shrinked_bbox = np.array(shrinked_bbox)[0]
if shrinked_bbox.shape[0] <= 2:
shrinked_bboxes.append(bbox)
continue
shrinked_bboxes.append(shrinked_bbox)
return np.array(shrinked_bboxes)
class IC15Loader(data.Dataset):
def __init__(self, is_transform=False, img_size=None, kernel_num=7, min_scale=0.4):
self.is_transform = is_transform
self.img_size = img_size if (img_size is None or isinstance(img_size, tuple)) else (img_size, img_size)
self.kernel_num = kernel_num
self.min_scale = min_scale
data_dirs = [ic15_train_data_dir]
gt_dirs = [ic15_train_gt_dir]
self.img_paths = []
self.gt_paths = []
for data_dir, gt_dir in zip(data_dirs, gt_dirs):
img_names = util.io.ls(data_dir, '.jpg')
img_names.extend(util.io.ls(data_dir, '.png'))
# img_names.extend(util.io.ls(data_dir, '.gif'))
img_paths = []
gt_paths = []
for idx, img_name in enumerate(img_names):
img_path = data_dir + img_name
img_paths.append(img_path)
gt_name = 'gt_' + img_name.split('.')[0] + '.txt'
gt_path = gt_dir + gt_name
gt_paths.append(gt_path)
self.img_paths.extend(img_paths)
self.gt_paths.extend(gt_paths)
def __len__(self):
return len(self.img_paths)
def __getitem__(self, index):
img_path = self.img_paths[index]
gt_path = self.gt_paths[index]
img = get_img(img_path)
bboxes, tags = get_bboxes(img, gt_path)
if self.is_transform:
img = random_scale(img, self.img_size[0])
gt_text = np.zeros(img.shape[0:2], dtype='uint8')
training_mask = np.ones(img.shape[0:2], dtype='uint8')
if bboxes.shape[0] > 0:
bboxes = np.reshape(bboxes * ([img.shape[1], img.shape[0]] * 4), (bboxes.shape[0], bboxes.shape[1] / 2, 2)).astype('int32')
for i in range(bboxes.shape[0]):
cv2.drawContours(gt_text, [bboxes[i]], -1, i + 1, -1)
if not tags[i]:
cv2.drawContours(training_mask, [bboxes[i]], -1, 0, -1)
gt_kernels = []
for i in range(1, self.kernel_num):
rate = 1.0 - (1.0 - self.min_scale) / (self.kernel_num - 1) * i
gt_kernel = np.zeros(img.shape[0:2], dtype='uint8')
kernel_bboxes = shrink(bboxes, rate)
for i in range(bboxes.shape[0]):
cv2.drawContours(gt_kernel, [kernel_bboxes[i]], -1, 1, -1)
gt_kernels.append(gt_kernel)
if self.is_transform:
imgs = [img, gt_text, training_mask]
imgs.extend(gt_kernels)
imgs = random_horizontal_flip(imgs)
imgs = random_rotate(imgs)
imgs = random_crop(imgs, self.img_size)
img, gt_text, training_mask, gt_kernels = imgs[0], imgs[1], imgs[2], imgs[3:]
gt_text[gt_text > 0] = 1
gt_kernels = np.array(gt_kernels)
# '''
if self.is_transform:
img = Image.fromarray(img)
img = img.convert('RGB')
img = transforms.ColorJitter(brightness = 32.0 / 255, saturation = 0.5)(img)
else:
img = Image.fromarray(img)
img = img.convert('RGB')
img = transforms.ToTensor()(img)
img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img)
gt_text = torch.from_numpy(gt_text).float()
gt_kernels = torch.from_numpy(gt_kernels).float()
training_mask = torch.from_numpy(training_mask).float()
# '''
return img, gt_text, gt_kernels, training_mask