forked from my-unikernel/qemu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arch_dump.c
452 lines (395 loc) · 12.2 KB
/
arch_dump.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*
* i386 memory mapping
*
* Copyright Fujitsu, Corp. 2011, 2012
*
* Authors:
* Wen Congyang <[email protected]>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "cpu.h"
#include "exec/cpu-all.h"
#include "sysemu/dump.h"
#include "elf.h"
#include "sysemu/memory_mapping.h"
#ifdef TARGET_X86_64
typedef struct {
target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
target_ulong rip, cs, eflags;
target_ulong rsp, ss;
target_ulong fs_base, gs_base;
target_ulong ds, es, fs, gs;
} x86_64_user_regs_struct;
typedef struct {
char pad1[32];
uint32_t pid;
char pad2[76];
x86_64_user_regs_struct regs;
char pad3[8];
} x86_64_elf_prstatus;
static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
CPUX86State *env, int id,
void *opaque)
{
x86_64_user_regs_struct regs;
Elf64_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
regs.r15 = env->regs[15];
regs.r14 = env->regs[14];
regs.r13 = env->regs[13];
regs.r12 = env->regs[12];
regs.r11 = env->regs[11];
regs.r10 = env->regs[10];
regs.r9 = env->regs[9];
regs.r8 = env->regs[8];
regs.rbp = env->regs[R_EBP];
regs.rsp = env->regs[R_ESP];
regs.rdi = env->regs[R_EDI];
regs.rsi = env->regs[R_ESI];
regs.rdx = env->regs[R_EDX];
regs.rcx = env->regs[R_ECX];
regs.rbx = env->regs[R_EBX];
regs.rax = env->regs[R_EAX];
regs.rip = env->eip;
regs.eflags = env->eflags;
regs.orig_rax = 0; /* FIXME */
regs.cs = env->segs[R_CS].selector;
regs.ss = env->segs[R_SS].selector;
regs.fs_base = env->segs[R_FS].base;
regs.gs_base = env->segs[R_GS].base;
regs.ds = env->segs[R_DS].selector;
regs.es = env->segs[R_ES].selector;
regs.fs = env->segs[R_FS].selector;
regs.gs = env->segs[R_GS].selector;
descsz = sizeof(x86_64_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf + 32, &id, 4); /* pr_pid */
buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
memcpy(buf, ®s, sizeof(x86_64_user_regs_struct));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
#endif
typedef struct {
uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
unsigned short ds, __ds, es, __es;
unsigned short fs, __fs, gs, __gs;
uint32_t orig_eax, eip;
unsigned short cs, __cs;
uint32_t eflags, esp;
unsigned short ss, __ss;
} x86_user_regs_struct;
typedef struct {
char pad1[24];
uint32_t pid;
char pad2[44];
x86_user_regs_struct regs;
char pad3[4];
} x86_elf_prstatus;
static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
int id)
{
memset(prstatus, 0, sizeof(x86_elf_prstatus));
prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
prstatus->regs.eip = env->eip & 0xffffffff;
prstatus->regs.eflags = env->eflags & 0xffffffff;
prstatus->regs.cs = env->segs[R_CS].selector;
prstatus->regs.ss = env->segs[R_SS].selector;
prstatus->regs.ds = env->segs[R_DS].selector;
prstatus->regs.es = env->segs[R_ES].selector;
prstatus->regs.fs = env->segs[R_FS].selector;
prstatus->regs.gs = env->segs[R_GS].selector;
prstatus->pid = id;
}
static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
int id, void *opaque)
{
x86_elf_prstatus prstatus;
Elf64_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
x86_fill_elf_prstatus(&prstatus, env, id);
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &prstatus, sizeof(prstatus));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque)
{
X86CPU *cpu = X86_CPU(cs);
int ret;
#ifdef TARGET_X86_64
X86CPU *first_x86_cpu = X86_CPU(first_cpu);
bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
if (lma) {
ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
} else {
#endif
ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
#ifdef TARGET_X86_64
}
#endif
return ret;
}
int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque)
{
X86CPU *cpu = X86_CPU(cs);
x86_elf_prstatus prstatus;
Elf32_Nhdr *note;
char *buf;
int descsz, note_size, name_size = 5;
const char *name = "CORE";
int ret;
x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
descsz = sizeof(x86_elf_prstatus);
note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc0(note_size);
note->n_namesz = cpu_to_le32(name_size);
note->n_descsz = cpu_to_le32(descsz);
note->n_type = cpu_to_le32(NT_PRSTATUS);
buf = (char *)note;
buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &prstatus, sizeof(prstatus));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
/*
* please count up QEMUCPUSTATE_VERSION if you have changed definition of
* QEMUCPUState, and modify the tools using this information accordingly.
*/
#define QEMUCPUSTATE_VERSION (1)
struct QEMUCPUSegment {
uint32_t selector;
uint32_t limit;
uint32_t flags;
uint32_t pad;
uint64_t base;
};
typedef struct QEMUCPUSegment QEMUCPUSegment;
struct QEMUCPUState {
uint32_t version;
uint32_t size;
uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
uint64_t rip, rflags;
QEMUCPUSegment cs, ds, es, fs, gs, ss;
QEMUCPUSegment ldt, tr, gdt, idt;
uint64_t cr[5];
};
typedef struct QEMUCPUState QEMUCPUState;
static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
{
d->pad = 0;
d->selector = s->selector;
d->limit = s->limit;
d->flags = s->flags;
d->base = s->base;
}
static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
{
memset(s, 0, sizeof(QEMUCPUState));
s->version = QEMUCPUSTATE_VERSION;
s->size = sizeof(QEMUCPUState);
s->rax = env->regs[R_EAX];
s->rbx = env->regs[R_EBX];
s->rcx = env->regs[R_ECX];
s->rdx = env->regs[R_EDX];
s->rsi = env->regs[R_ESI];
s->rdi = env->regs[R_EDI];
s->rsp = env->regs[R_ESP];
s->rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
s->r8 = env->regs[8];
s->r9 = env->regs[9];
s->r10 = env->regs[10];
s->r11 = env->regs[11];
s->r12 = env->regs[12];
s->r13 = env->regs[13];
s->r14 = env->regs[14];
s->r15 = env->regs[15];
#endif
s->rip = env->eip;
s->rflags = env->eflags;
copy_segment(&s->cs, &env->segs[R_CS]);
copy_segment(&s->ds, &env->segs[R_DS]);
copy_segment(&s->es, &env->segs[R_ES]);
copy_segment(&s->fs, &env->segs[R_FS]);
copy_segment(&s->gs, &env->segs[R_GS]);
copy_segment(&s->ss, &env->segs[R_SS]);
copy_segment(&s->ldt, &env->ldt);
copy_segment(&s->tr, &env->tr);
copy_segment(&s->gdt, &env->gdt);
copy_segment(&s->idt, &env->idt);
s->cr[0] = env->cr[0];
s->cr[1] = env->cr[1];
s->cr[2] = env->cr[2];
s->cr[3] = env->cr[3];
s->cr[4] = env->cr[4];
}
static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
CPUX86State *env,
void *opaque,
int type)
{
QEMUCPUState state;
Elf64_Nhdr *note64;
Elf32_Nhdr *note32;
void *note;
char *buf;
int descsz, note_size, name_size = 5, note_head_size;
const char *name = "QEMU";
int ret;
qemu_get_cpustate(&state, env);
descsz = sizeof(state);
if (type == 0) {
note_head_size = sizeof(Elf32_Nhdr);
} else {
note_head_size = sizeof(Elf64_Nhdr);
}
note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(descsz + 3) / 4) * 4;
note = g_malloc0(note_size);
if (type == 0) {
note32 = note;
note32->n_namesz = cpu_to_le32(name_size);
note32->n_descsz = cpu_to_le32(descsz);
note32->n_type = 0;
} else {
note64 = note;
note64->n_namesz = cpu_to_le32(name_size);
note64->n_descsz = cpu_to_le32(descsz);
note64->n_type = 0;
}
buf = note;
buf += ((note_head_size + 3) / 4) * 4;
memcpy(buf, name, name_size);
buf += ((name_size + 3) / 4) * 4;
memcpy(buf, &state, sizeof(state));
ret = f(note, note_size, opaque);
g_free(note);
if (ret < 0) {
return -1;
}
return 0;
}
int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
void *opaque)
{
X86CPU *cpu = X86_CPU(cs);
return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
}
int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
void *opaque)
{
X86CPU *cpu = X86_CPU(cs);
return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
}
int cpu_get_dump_info(ArchDumpInfo *info,
const GuestPhysBlockList *guest_phys_blocks)
{
bool lma = false;
GuestPhysBlock *block;
#ifdef TARGET_X86_64
X86CPU *first_x86_cpu = X86_CPU(first_cpu);
lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
#endif
if (lma) {
info->d_machine = EM_X86_64;
} else {
info->d_machine = EM_386;
}
info->d_endian = ELFDATA2LSB;
if (lma) {
info->d_class = ELFCLASS64;
} else {
info->d_class = ELFCLASS32;
QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
if (block->target_end > UINT_MAX) {
/* The memory size is greater than 4G */
info->d_class = ELFCLASS64;
break;
}
}
}
return 0;
}
ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
{
int name_size = 5; /* "CORE" or "QEMU" */
size_t elf_note_size = 0;
size_t qemu_note_size = 0;
int elf_desc_size = 0;
int qemu_desc_size = 0;
int note_head_size;
if (class == ELFCLASS32) {
note_head_size = sizeof(Elf32_Nhdr);
} else {
note_head_size = sizeof(Elf64_Nhdr);
}
if (machine == EM_386) {
elf_desc_size = sizeof(x86_elf_prstatus);
}
#ifdef TARGET_X86_64
else {
elf_desc_size = sizeof(x86_64_elf_prstatus);
}
#endif
qemu_desc_size = sizeof(QEMUCPUState);
elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(elf_desc_size + 3) / 4) * 4;
qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
(qemu_desc_size + 3) / 4) * 4;
return (elf_note_size + qemu_note_size) * nr_cpus;
}