forked from my-unikernel/qemu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppc.c
5430 lines (4531 loc) · 238 KB
/
ppc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ppc-dis.c -- Disassemble PowerPC instructions
Copyright 1994, 1995, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Written by Ian Lance Taylor, Cygnus Support
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
2, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not,
see <http://www.gnu.org/licenses/>. */
#include "qemu/osdep.h"
#include "disas/bfd.h"
#define BFD_DEFAULT_TARGET_SIZE 64
/* ppc.h -- Header file for PowerPC opcode table
Copyright 1994, 1995, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007 Free Software Foundation, Inc.
Written by Ian Lance Taylor, Cygnus Support
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not,
see <http://www.gnu.org/licenses/>. */
/* The opcode table is an array of struct powerpc_opcode. */
struct powerpc_opcode
{
/* The opcode name. */
const char *name;
/* The opcode itself. Those bits which will be filled in with
operands are zeroes. */
unsigned long opcode;
/* The opcode mask. This is used by the disassembler. This is a
mask containing ones indicating those bits which must match the
opcode field, and zeroes indicating those bits which need not
match (and are presumably filled in by operands). */
unsigned long mask;
/* One bit flags for the opcode. These are used to indicate which
specific processors support the instructions. The defined values
are listed below. */
unsigned long flags;
/* An array of operand codes. Each code is an index into the
operand table. They appear in the order which the operands must
appear in assembly code, and are terminated by a zero. */
unsigned char operands[8];
};
/* The table itself is sorted by major opcode number, and is otherwise
in the order in which the disassembler should consider
instructions. */
extern const struct powerpc_opcode powerpc_opcodes[];
extern const int powerpc_num_opcodes;
/* Values defined for the flags field of a struct powerpc_opcode. */
/* Opcode is defined for the PowerPC architecture. */
#define PPC_OPCODE_PPC 1
/* Opcode is defined for the POWER (RS/6000) architecture. */
#define PPC_OPCODE_POWER 2
/* Opcode is defined for the POWER2 (Rios 2) architecture. */
#define PPC_OPCODE_POWER2 4
/* Opcode is only defined on 32 bit architectures. */
#define PPC_OPCODE_32 8
/* Opcode is only defined on 64 bit architectures. */
#define PPC_OPCODE_64 0x10
/* Opcode is supported by the Motorola PowerPC 601 processor. The 601
is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
but it also supports many additional POWER instructions. */
#define PPC_OPCODE_601 0x20
/* Opcode is supported in both the Power and PowerPC architectures
(ie, compiler's -mcpu=common or assembler's -mcom). */
#define PPC_OPCODE_COMMON 0x40
/* Opcode is supported for any Power or PowerPC platform (this is
for the assembler's -many option, and it eliminates duplicates). */
#define PPC_OPCODE_ANY 0x80
/* Opcode is supported as part of the 64-bit bridge. */
#define PPC_OPCODE_64_BRIDGE 0x100
/* Opcode is supported by Altivec Vector Unit */
#define PPC_OPCODE_ALTIVEC 0x200
/* Opcode is supported by PowerPC 403 processor. */
#define PPC_OPCODE_403 0x400
/* Opcode is supported by PowerPC BookE processor. */
#define PPC_OPCODE_BOOKE 0x800
/* Opcode is only supported by 64-bit PowerPC BookE processor. */
#define PPC_OPCODE_BOOKE64 0x1000
/* Opcode is supported by PowerPC 440 processor. */
#define PPC_OPCODE_440 0x2000
/* Opcode is only supported by Power4 architecture. */
#define PPC_OPCODE_POWER4 0x4000
/* Opcode isn't supported by Power4 architecture. */
#define PPC_OPCODE_NOPOWER4 0x8000
/* Opcode is only supported by POWERPC Classic architecture. */
#define PPC_OPCODE_CLASSIC 0x10000
/* Opcode is only supported by e500x2 Core. */
#define PPC_OPCODE_SPE 0x20000
/* Opcode is supported by e500x2 Integer select APU. */
#define PPC_OPCODE_ISEL 0x40000
/* Opcode is an e500 SPE floating point instruction. */
#define PPC_OPCODE_EFS 0x80000
/* Opcode is supported by branch locking APU. */
#define PPC_OPCODE_BRLOCK 0x100000
/* Opcode is supported by performance monitor APU. */
#define PPC_OPCODE_PMR 0x200000
/* Opcode is supported by cache locking APU. */
#define PPC_OPCODE_CACHELCK 0x400000
/* Opcode is supported by machine check APU. */
#define PPC_OPCODE_RFMCI 0x800000
/* Opcode is only supported by Power5 architecture. */
#define PPC_OPCODE_POWER5 0x1000000
/* Opcode is supported by PowerPC e300 family. */
#define PPC_OPCODE_E300 0x2000000
/* Opcode is only supported by Power6 architecture. */
#define PPC_OPCODE_POWER6 0x4000000
/* Opcode is only supported by PowerPC Cell family. */
#define PPC_OPCODE_CELL 0x8000000
/* A macro to extract the major opcode from an instruction. */
#define PPC_OP(i) (((i) >> 26) & 0x3f)
/* The operands table is an array of struct powerpc_operand. */
struct powerpc_operand
{
/* A bitmask of bits in the operand. */
unsigned int bitm;
/* How far the operand is left shifted in the instruction.
-1 to indicate that BITM and SHIFT cannot be used to determine
where the operand goes in the insn. */
int shift;
/* Insertion function. This is used by the assembler. To insert an
operand value into an instruction, check this field.
If it is NULL, execute
i |= (op & o->bitm) << o->shift;
(i is the instruction which we are filling in, o is a pointer to
this structure, and op is the operand value).
If this field is not NULL, then simply call it with the
instruction and the operand value. It will return the new value
of the instruction. If the ERRMSG argument is not NULL, then if
the operand value is illegal, *ERRMSG will be set to a warning
string (the operand will be inserted in any case). If the
operand value is legal, *ERRMSG will be unchanged (most operands
can accept any value). */
unsigned long (*insert)
(unsigned long instruction, long op, int dialect, const char **errmsg);
/* Extraction function. This is used by the disassembler. To
extract this operand type from an instruction, check this field.
If it is NULL, compute
op = (i >> o->shift) & o->bitm;
if ((o->flags & PPC_OPERAND_SIGNED) != 0)
sign_extend (op);
(i is the instruction, o is a pointer to this structure, and op
is the result).
If this field is not NULL, then simply call it with the
instruction value. It will return the value of the operand. If
the INVALID argument is not NULL, *INVALID will be set to
non-zero if this operand type can not actually be extracted from
this operand (i.e., the instruction does not match). If the
operand is valid, *INVALID will not be changed. */
long (*extract) (unsigned long instruction, int dialect, int *invalid);
/* One bit syntax flags. */
unsigned long flags;
};
/* Elements in the table are retrieved by indexing with values from
the operands field of the powerpc_opcodes table. */
extern const struct powerpc_operand powerpc_operands[];
extern const unsigned int num_powerpc_operands;
/* Values defined for the flags field of a struct powerpc_operand. */
/* This operand takes signed values. */
#define PPC_OPERAND_SIGNED (0x1)
/* This operand takes signed values, but also accepts a full positive
range of values when running in 32 bit mode. That is, if bits is
16, it takes any value from -0x8000 to 0xffff. In 64 bit mode,
this flag is ignored. */
#define PPC_OPERAND_SIGNOPT (0x2)
/* This operand does not actually exist in the assembler input. This
is used to support extended mnemonics such as mr, for which two
operands fields are identical. The assembler should call the
insert function with any op value. The disassembler should call
the extract function, ignore the return value, and check the value
placed in the valid argument. */
#define PPC_OPERAND_FAKE (0x4)
/* The next operand should be wrapped in parentheses rather than
separated from this one by a comma. This is used for the load and
store instructions which want their operands to look like
reg,displacement(reg)
*/
#define PPC_OPERAND_PARENS (0x8)
/* This operand may use the symbolic names for the CR fields, which
are
lt 0 gt 1 eq 2 so 3 un 3
cr0 0 cr1 1 cr2 2 cr3 3
cr4 4 cr5 5 cr6 6 cr7 7
These may be combined arithmetically, as in cr2*4+gt. These are
only supported on the PowerPC, not the POWER. */
#define PPC_OPERAND_CR (0x10)
/* This operand names a register. The disassembler uses this to print
register names with a leading 'r'. */
#define PPC_OPERAND_GPR (0x20)
/* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0. */
#define PPC_OPERAND_GPR_0 (0x40)
/* This operand names a floating point register. The disassembler
prints these with a leading 'f'. */
#define PPC_OPERAND_FPR (0x80)
/* This operand is a relative branch displacement. The disassembler
prints these symbolically if possible. */
#define PPC_OPERAND_RELATIVE (0x100)
/* This operand is an absolute branch address. The disassembler
prints these symbolically if possible. */
#define PPC_OPERAND_ABSOLUTE (0x200)
/* This operand is optional, and is zero if omitted. This is used for
example, in the optional BF field in the comparison instructions. The
assembler must count the number of operands remaining on the line,
and the number of operands remaining for the opcode, and decide
whether this operand is present or not. The disassembler should
print this operand out only if it is not zero. */
#define PPC_OPERAND_OPTIONAL (0x400)
/* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand
is omitted, then for the next operand use this operand value plus
1, ignoring the next operand field for the opcode. This wretched
hack is needed because the Power rotate instructions can take
either 4 or 5 operands. The disassembler should print this operand
out regardless of the PPC_OPERAND_OPTIONAL field. */
#define PPC_OPERAND_NEXT (0x800)
/* This operand should be regarded as a negative number for the
purposes of overflow checking (i.e., the normal most negative
number is disallowed and one more than the normal most positive
number is allowed). This flag will only be set for a signed
operand. */
#define PPC_OPERAND_NEGATIVE (0x1000)
/* This operand names a vector unit register. The disassembler
prints these with a leading 'v'. */
#define PPC_OPERAND_VR (0x2000)
/* This operand is for the DS field in a DS form instruction. */
#define PPC_OPERAND_DS (0x4000)
/* This operand is for the DQ field in a DQ form instruction. */
#define PPC_OPERAND_DQ (0x8000)
/* Valid range of operand is 0..n rather than 0..n-1. */
#define PPC_OPERAND_PLUS1 (0x10000)
/* The POWER and PowerPC assemblers use a few macros. We keep them
with the operands table for simplicity. The macro table is an
array of struct powerpc_macro. */
struct powerpc_macro
{
/* The macro name. */
const char *name;
/* The number of operands the macro takes. */
unsigned int operands;
/* One bit flags for the opcode. These are used to indicate which
specific processors support the instructions. The values are the
same as those for the struct powerpc_opcode flags field. */
unsigned long flags;
/* A format string to turn the macro into a normal instruction.
Each %N in the string is replaced with operand number N (zero
based). */
const char *format;
};
extern const struct powerpc_macro powerpc_macros[];
extern const int powerpc_num_macros;
/* ppc-opc.c -- PowerPC opcode list
Copyright 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007 Free Software Foundation, Inc.
Written by Ian Lance Taylor, Cygnus Support
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
2, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING.
If not, see <http://www.gnu.org/licenses/>. */
/* This file holds the PowerPC opcode table. The opcode table
includes almost all of the extended instruction mnemonics. This
permits the disassembler to use them, and simplifies the assembler
logic, at the cost of increasing the table size. The table is
strictly constant data, so the compiler should be able to put it in
the .text section.
This file also holds the operand table. All knowledge about
inserting operands into instructions and vice-versa is kept in this
file. */
/* Local insertion and extraction functions. */
static unsigned long insert_bat (unsigned long, long, int, const char **);
static long extract_bat (unsigned long, int, int *);
static unsigned long insert_bba (unsigned long, long, int, const char **);
static long extract_bba (unsigned long, int, int *);
static unsigned long insert_bdm (unsigned long, long, int, const char **);
static long extract_bdm (unsigned long, int, int *);
static unsigned long insert_bdp (unsigned long, long, int, const char **);
static long extract_bdp (unsigned long, int, int *);
static unsigned long insert_bo (unsigned long, long, int, const char **);
static long extract_bo (unsigned long, int, int *);
static unsigned long insert_boe (unsigned long, long, int, const char **);
static long extract_boe (unsigned long, int, int *);
static unsigned long insert_fxm (unsigned long, long, int, const char **);
static long extract_fxm (unsigned long, int, int *);
static unsigned long insert_mbe (unsigned long, long, int, const char **);
static long extract_mbe (unsigned long, int, int *);
static unsigned long insert_mb6 (unsigned long, long, int, const char **);
static long extract_mb6 (unsigned long, int, int *);
static long extract_nb (unsigned long, int, int *);
static unsigned long insert_nsi (unsigned long, long, int, const char **);
static long extract_nsi (unsigned long, int, int *);
static unsigned long insert_ral (unsigned long, long, int, const char **);
static unsigned long insert_ram (unsigned long, long, int, const char **);
static unsigned long insert_raq (unsigned long, long, int, const char **);
static unsigned long insert_ras (unsigned long, long, int, const char **);
static unsigned long insert_rbs (unsigned long, long, int, const char **);
static long extract_rbs (unsigned long, int, int *);
static unsigned long insert_sh6 (unsigned long, long, int, const char **);
static long extract_sh6 (unsigned long, int, int *);
static unsigned long insert_spr (unsigned long, long, int, const char **);
static long extract_spr (unsigned long, int, int *);
static unsigned long insert_sprg (unsigned long, long, int, const char **);
static long extract_sprg (unsigned long, int, int *);
static unsigned long insert_tbr (unsigned long, long, int, const char **);
static long extract_tbr (unsigned long, int, int *);
/* The operands table.
The fields are bitm, shift, insert, extract, flags.
We used to put parens around the various additions, like the one
for BA just below. However, that caused trouble with feeble
compilers with a limit on depth of a parenthesized expression, like
(reportedly) the compiler in Microsoft Developer Studio 5. So we
omit the parens, since the macros are never used in a context where
the addition will be ambiguous. */
const struct powerpc_operand powerpc_operands[] =
{
/* The zero index is used to indicate the end of the list of
operands. */
#define UNUSED 0
{ 0, 0, NULL, NULL, 0 },
/* The BA field in an XL form instruction. */
#define BA UNUSED + 1
/* The BI field in a B form or XL form instruction. */
#define BI BA
#define BI_MASK (0x1f << 16)
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_CR },
/* The BA field in an XL form instruction when it must be the same
as the BT field in the same instruction. */
#define BAT BA + 1
{ 0x1f, 16, insert_bat, extract_bat, PPC_OPERAND_FAKE },
/* The BB field in an XL form instruction. */
#define BB BAT + 1
#define BB_MASK (0x1f << 11)
{ 0x1f, 11, NULL, NULL, PPC_OPERAND_CR },
/* The BB field in an XL form instruction when it must be the same
as the BA field in the same instruction. */
#define BBA BB + 1
{ 0x1f, 11, insert_bba, extract_bba, PPC_OPERAND_FAKE },
/* The BD field in a B form instruction. The lower two bits are
forced to zero. */
#define BD BBA + 1
{ 0xfffc, 0, NULL, NULL, PPC_OPERAND_RELATIVE | PPC_OPERAND_SIGNED },
/* The BD field in a B form instruction when absolute addressing is
used. */
#define BDA BD + 1
{ 0xfffc, 0, NULL, NULL, PPC_OPERAND_ABSOLUTE | PPC_OPERAND_SIGNED },
/* The BD field in a B form instruction when the - modifier is used.
This sets the y bit of the BO field appropriately. */
#define BDM BDA + 1
{ 0xfffc, 0, insert_bdm, extract_bdm,
PPC_OPERAND_RELATIVE | PPC_OPERAND_SIGNED },
/* The BD field in a B form instruction when the - modifier is used
and absolute address is used. */
#define BDMA BDM + 1
{ 0xfffc, 0, insert_bdm, extract_bdm,
PPC_OPERAND_ABSOLUTE | PPC_OPERAND_SIGNED },
/* The BD field in a B form instruction when the + modifier is used.
This sets the y bit of the BO field appropriately. */
#define BDP BDMA + 1
{ 0xfffc, 0, insert_bdp, extract_bdp,
PPC_OPERAND_RELATIVE | PPC_OPERAND_SIGNED },
/* The BD field in a B form instruction when the + modifier is used
and absolute addressing is used. */
#define BDPA BDP + 1
{ 0xfffc, 0, insert_bdp, extract_bdp,
PPC_OPERAND_ABSOLUTE | PPC_OPERAND_SIGNED },
/* The BF field in an X or XL form instruction. */
#define BF BDPA + 1
/* The CRFD field in an X form instruction. */
#define CRFD BF
{ 0x7, 23, NULL, NULL, PPC_OPERAND_CR },
/* The BF field in an X or XL form instruction. */
#define BFF BF + 1
{ 0x7, 23, NULL, NULL, 0 },
/* An optional BF field. This is used for comparison instructions,
in which an omitted BF field is taken as zero. */
#define OBF BFF + 1
{ 0x7, 23, NULL, NULL, PPC_OPERAND_CR | PPC_OPERAND_OPTIONAL },
/* The BFA field in an X or XL form instruction. */
#define BFA OBF + 1
{ 0x7, 18, NULL, NULL, PPC_OPERAND_CR },
/* The BO field in a B form instruction. Certain values are
illegal. */
#define BO BFA + 1
#define BO_MASK (0x1f << 21)
{ 0x1f, 21, insert_bo, extract_bo, 0 },
/* The BO field in a B form instruction when the + or - modifier is
used. This is like the BO field, but it must be even. */
#define BOE BO + 1
{ 0x1e, 21, insert_boe, extract_boe, 0 },
#define BH BOE + 1
{ 0x3, 11, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The BT field in an X or XL form instruction. */
#define BT BH + 1
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_CR },
/* The condition register number portion of the BI field in a B form
or XL form instruction. This is used for the extended
conditional branch mnemonics, which set the lower two bits of the
BI field. This field is optional. */
#define CR BT + 1
{ 0x7, 18, NULL, NULL, PPC_OPERAND_CR | PPC_OPERAND_OPTIONAL },
/* The CRB field in an X form instruction. */
#define CRB CR + 1
/* The MB field in an M form instruction. */
#define MB CRB
#define MB_MASK (0x1f << 6)
{ 0x1f, 6, NULL, NULL, 0 },
/* The CRFS field in an X form instruction. */
#define CRFS CRB + 1
{ 0x7, 0, NULL, NULL, PPC_OPERAND_CR },
/* The CT field in an X form instruction. */
#define CT CRFS + 1
/* The MO field in an mbar instruction. */
#define MO CT
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The D field in a D form instruction. This is a displacement off
a register, and implies that the next operand is a register in
parentheses. */
#define D CT + 1
{ 0xffff, 0, NULL, NULL, PPC_OPERAND_PARENS | PPC_OPERAND_SIGNED },
/* The DE field in a DE form instruction. This is like D, but is 12
bits only. */
#define DE D + 1
{ 0xfff, 4, NULL, NULL, PPC_OPERAND_PARENS | PPC_OPERAND_SIGNED },
/* The DES field in a DES form instruction. This is like DS, but is 14
bits only (12 stored.) */
#define DES DE + 1
{ 0x3ffc, 2, NULL, NULL, PPC_OPERAND_PARENS | PPC_OPERAND_SIGNED },
/* The DQ field in a DQ form instruction. This is like D, but the
lower four bits are forced to zero. */
#define DQ DES + 1
{ 0xfff0, 0, NULL, NULL,
PPC_OPERAND_PARENS | PPC_OPERAND_SIGNED | PPC_OPERAND_DQ },
/* The DS field in a DS form instruction. This is like D, but the
lower two bits are forced to zero. */
#undef DS
#define DS DQ + 1
{ 0xfffc, 0, NULL, NULL,
PPC_OPERAND_PARENS | PPC_OPERAND_SIGNED | PPC_OPERAND_DS },
/* The E field in a wrteei instruction. */
#define E DS + 1
{ 0x1, 15, NULL, NULL, 0 },
/* The FL1 field in a POWER SC form instruction. */
#define FL1 E + 1
/* The U field in an X form instruction. */
#define U FL1
{ 0xf, 12, NULL, NULL, 0 },
/* The FL2 field in a POWER SC form instruction. */
#define FL2 FL1 + 1
{ 0x7, 2, NULL, NULL, 0 },
/* The FLM field in an XFL form instruction. */
#define FLM FL2 + 1
{ 0xff, 17, NULL, NULL, 0 },
/* The FRA field in an X or A form instruction. */
#define FRA FLM + 1
#define FRA_MASK (0x1f << 16)
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_FPR },
/* The FRB field in an X or A form instruction. */
#define FRB FRA + 1
#define FRB_MASK (0x1f << 11)
{ 0x1f, 11, NULL, NULL, PPC_OPERAND_FPR },
/* The FRC field in an A form instruction. */
#define FRC FRB + 1
#define FRC_MASK (0x1f << 6)
{ 0x1f, 6, NULL, NULL, PPC_OPERAND_FPR },
/* The FRS field in an X form instruction or the FRT field in a D, X
or A form instruction. */
#define FRS FRC + 1
#define FRT FRS
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_FPR },
/* The FXM field in an XFX instruction. */
#define FXM FRS + 1
{ 0xff, 12, insert_fxm, extract_fxm, 0 },
/* Power4 version for mfcr. */
#define FXM4 FXM + 1
{ 0xff, 12, insert_fxm, extract_fxm, PPC_OPERAND_OPTIONAL },
/* The L field in a D or X form instruction. */
#define L FXM4 + 1
{ 0x1, 21, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The LEV field in a POWER SVC form instruction. */
#define SVC_LEV L + 1
{ 0x7f, 5, NULL, NULL, 0 },
/* The LEV field in an SC form instruction. */
#define LEV SVC_LEV + 1
{ 0x7f, 5, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The LI field in an I form instruction. The lower two bits are
forced to zero. */
#define LI LEV + 1
{ 0x3fffffc, 0, NULL, NULL, PPC_OPERAND_RELATIVE | PPC_OPERAND_SIGNED },
/* The LI field in an I form instruction when used as an absolute
address. */
#define LIA LI + 1
{ 0x3fffffc, 0, NULL, NULL, PPC_OPERAND_ABSOLUTE | PPC_OPERAND_SIGNED },
/* The LS field in an X (sync) form instruction. */
#define LS LIA + 1
{ 0x3, 21, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The ME field in an M form instruction. */
#define ME LS + 1
#define ME_MASK (0x1f << 1)
{ 0x1f, 1, NULL, NULL, 0 },
/* The MB and ME fields in an M form instruction expressed a single
operand which is a bitmask indicating which bits to select. This
is a two operand form using PPC_OPERAND_NEXT. See the
description in opcode/ppc.h for what this means. */
#define MBE ME + 1
{ 0x1f, 6, NULL, NULL, PPC_OPERAND_OPTIONAL | PPC_OPERAND_NEXT },
{ -1, 0, insert_mbe, extract_mbe, 0 },
/* The MB or ME field in an MD or MDS form instruction. The high
bit is wrapped to the low end. */
#define MB6 MBE + 2
#define ME6 MB6
#define MB6_MASK (0x3f << 5)
{ 0x3f, 5, insert_mb6, extract_mb6, 0 },
/* The NB field in an X form instruction. The value 32 is stored as
0. */
#define NB MB6 + 1
{ 0x1f, 11, NULL, extract_nb, PPC_OPERAND_PLUS1 },
/* The NSI field in a D form instruction. This is the same as the
SI field, only negated. */
#define NSI NB + 1
{ 0xffff, 0, insert_nsi, extract_nsi,
PPC_OPERAND_NEGATIVE | PPC_OPERAND_SIGNED },
/* The RA field in an D, DS, DQ, X, XO, M, or MDS form instruction. */
#define RA NSI + 1
#define RA_MASK (0x1f << 16)
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_GPR },
/* As above, but 0 in the RA field means zero, not r0. */
#define RA0 RA + 1
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_GPR_0 },
/* The RA field in the DQ form lq instruction, which has special
value restrictions. */
#define RAQ RA0 + 1
{ 0x1f, 16, insert_raq, NULL, PPC_OPERAND_GPR_0 },
/* The RA field in a D or X form instruction which is an updating
load, which means that the RA field may not be zero and may not
equal the RT field. */
#define RAL RAQ + 1
{ 0x1f, 16, insert_ral, NULL, PPC_OPERAND_GPR_0 },
/* The RA field in an lmw instruction, which has special value
restrictions. */
#define RAM RAL + 1
{ 0x1f, 16, insert_ram, NULL, PPC_OPERAND_GPR_0 },
/* The RA field in a D or X form instruction which is an updating
store or an updating floating point load, which means that the RA
field may not be zero. */
#define RAS RAM + 1
{ 0x1f, 16, insert_ras, NULL, PPC_OPERAND_GPR_0 },
/* The RA field of the tlbwe instruction, which is optional. */
#define RAOPT RAS + 1
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_GPR | PPC_OPERAND_OPTIONAL },
/* The RB field in an X, XO, M, or MDS form instruction. */
#define RB RAOPT + 1
#define RB_MASK (0x1f << 11)
{ 0x1f, 11, NULL, NULL, PPC_OPERAND_GPR },
/* The RB field in an X form instruction when it must be the same as
the RS field in the instruction. This is used for extended
mnemonics like mr. */
#define RBS RB + 1
{ 0x1f, 11, insert_rbs, extract_rbs, PPC_OPERAND_FAKE },
/* The RS field in a D, DS, X, XFX, XS, M, MD or MDS form
instruction or the RT field in a D, DS, X, XFX or XO form
instruction. */
#define RS RBS + 1
#define RT RS
#define RT_MASK (0x1f << 21)
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_GPR },
/* The RS and RT fields of the DS form stq instruction, which have
special value restrictions. */
#define RSQ RS + 1
#define RTQ RSQ
{ 0x1e, 21, NULL, NULL, PPC_OPERAND_GPR_0 },
/* The RS field of the tlbwe instruction, which is optional. */
#define RSO RSQ + 1
#define RTO RSO
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_GPR | PPC_OPERAND_OPTIONAL },
/* The SH field in an X or M form instruction. */
#define SH RSO + 1
#define SH_MASK (0x1f << 11)
/* The other UIMM field in a EVX form instruction. */
#define EVUIMM SH
{ 0x1f, 11, NULL, NULL, 0 },
/* The SH field in an MD form instruction. This is split. */
#define SH6 SH + 1
#define SH6_MASK ((0x1f << 11) | (1 << 1))
{ 0x3f, -1, insert_sh6, extract_sh6, 0 },
/* The SH field of the tlbwe instruction, which is optional. */
#define SHO SH6 + 1
{ 0x1f, 11, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The SI field in a D form instruction. */
#define SI SHO + 1
{ 0xffff, 0, NULL, NULL, PPC_OPERAND_SIGNED },
/* The SI field in a D form instruction when we accept a wide range
of positive values. */
#define SISIGNOPT SI + 1
{ 0xffff, 0, NULL, NULL, PPC_OPERAND_SIGNED | PPC_OPERAND_SIGNOPT },
/* The SPR field in an XFX form instruction. This is flipped--the
lower 5 bits are stored in the upper 5 and vice- versa. */
#define SPR SISIGNOPT + 1
#define PMR SPR
#define SPR_MASK (0x3ff << 11)
{ 0x3ff, 11, insert_spr, extract_spr, 0 },
/* The BAT index number in an XFX form m[ft]ibat[lu] instruction. */
#define SPRBAT SPR + 1
#define SPRBAT_MASK (0x3 << 17)
{ 0x3, 17, NULL, NULL, 0 },
/* The SPRG register number in an XFX form m[ft]sprg instruction. */
#define SPRG SPRBAT + 1
{ 0x1f, 16, insert_sprg, extract_sprg, 0 },
/* The SR field in an X form instruction. */
#define SR SPRG + 1
{ 0xf, 16, NULL, NULL, 0 },
/* The STRM field in an X AltiVec form instruction. */
#define STRM SR + 1
{ 0x3, 21, NULL, NULL, 0 },
/* The SV field in a POWER SC form instruction. */
#define SV STRM + 1
{ 0x3fff, 2, NULL, NULL, 0 },
/* The TBR field in an XFX form instruction. This is like the SPR
field, but it is optional. */
#define TBR SV + 1
{ 0x3ff, 11, insert_tbr, extract_tbr, PPC_OPERAND_OPTIONAL },
/* The TO field in a D or X form instruction. */
#define TO TBR + 1
#define TO_MASK (0x1f << 21)
{ 0x1f, 21, NULL, NULL, 0 },
/* The UI field in a D form instruction. */
#define UI TO + 1
{ 0xffff, 0, NULL, NULL, 0 },
/* The VA field in a VA, VX or VXR form instruction. */
#define VA UI + 1
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_VR },
/* The VB field in a VA, VX or VXR form instruction. */
#define VB VA + 1
{ 0x1f, 11, NULL, NULL, PPC_OPERAND_VR },
/* The VC field in a VA form instruction. */
#define VC VB + 1
{ 0x1f, 6, NULL, NULL, PPC_OPERAND_VR },
/* The VD or VS field in a VA, VX, VXR or X form instruction. */
#define VD VC + 1
#define VS VD
{ 0x1f, 21, NULL, NULL, PPC_OPERAND_VR },
/* The SIMM field in a VX form instruction. */
#define SIMM VD + 1
{ 0x1f, 16, NULL, NULL, PPC_OPERAND_SIGNED},
/* The UIMM field in a VX form instruction, and TE in Z form. */
#define UIMM SIMM + 1
#define TE UIMM
{ 0x1f, 16, NULL, NULL, 0 },
/* The SHB field in a VA form instruction. */
#define SHB UIMM + 1
{ 0xf, 6, NULL, NULL, 0 },
/* The other UIMM field in a half word EVX form instruction. */
#define EVUIMM_2 SHB + 1
{ 0x3e, 10, NULL, NULL, PPC_OPERAND_PARENS },
/* The other UIMM field in a word EVX form instruction. */
#define EVUIMM_4 EVUIMM_2 + 1
{ 0x7c, 9, NULL, NULL, PPC_OPERAND_PARENS },
/* The other UIMM field in a double EVX form instruction. */
#define EVUIMM_8 EVUIMM_4 + 1
{ 0xf8, 8, NULL, NULL, PPC_OPERAND_PARENS },
/* The WS field. */
#define WS EVUIMM_8 + 1
{ 0x7, 11, NULL, NULL, 0 },
/* The L field in an mtmsrd or A form instruction or W in an X form. */
#define A_L WS + 1
#define W A_L
{ 0x1, 16, NULL, NULL, PPC_OPERAND_OPTIONAL },
#define RMC A_L + 1
{ 0x3, 9, NULL, NULL, 0 },
#define R RMC + 1
{ 0x1, 16, NULL, NULL, 0 },
#define SP R + 1
{ 0x3, 19, NULL, NULL, 0 },
#define S SP + 1
{ 0x1, 20, NULL, NULL, 0 },
/* SH field starting at bit position 16. */
#define SH16 S + 1
/* The DCM and DGM fields in a Z form instruction. */
#define DCM SH16
#define DGM DCM
{ 0x3f, 10, NULL, NULL, 0 },
/* The EH field in larx instruction. */
#define EH SH16 + 1
{ 0x1, 0, NULL, NULL, PPC_OPERAND_OPTIONAL },
/* The L field in an mtfsf or XFL form instruction. */
#define XFL_L EH + 1
{ 0x1, 25, NULL, NULL, PPC_OPERAND_OPTIONAL},
};
const unsigned int num_powerpc_operands = (sizeof (powerpc_operands)
/ sizeof (powerpc_operands[0]));
/* The functions used to insert and extract complicated operands. */
/* The BA field in an XL form instruction when it must be the same as
the BT field in the same instruction. This operand is marked FAKE.
The insertion function just copies the BT field into the BA field,
and the extraction function just checks that the fields are the
same. */
static unsigned long
insert_bat (unsigned long insn,
long value ATTRIBUTE_UNUSED,
int dialect ATTRIBUTE_UNUSED,
const char **errmsg ATTRIBUTE_UNUSED)
{
return insn | (((insn >> 21) & 0x1f) << 16);
}
static long
extract_bat (unsigned long insn,
int dialect ATTRIBUTE_UNUSED,
int *invalid)
{
if (((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
*invalid = 1;
return 0;
}
/* The BB field in an XL form instruction when it must be the same as
the BA field in the same instruction. This operand is marked FAKE.
The insertion function just copies the BA field into the BB field,
and the extraction function just checks that the fields are the
same. */
static unsigned long
insert_bba (unsigned long insn,
long value ATTRIBUTE_UNUSED,
int dialect ATTRIBUTE_UNUSED,
const char **errmsg ATTRIBUTE_UNUSED)
{
return insn | (((insn >> 16) & 0x1f) << 11);
}
static long
extract_bba (unsigned long insn,
int dialect ATTRIBUTE_UNUSED,
int *invalid)
{
if (((insn >> 16) & 0x1f) != ((insn >> 11) & 0x1f))
*invalid = 1;
return 0;
}
/* The BD field in a B form instruction when the - modifier is used.
This modifier means that the branch is not expected to be taken.
For chips built to versions of the architecture prior to version 2
(ie. not Power4 compatible), we set the y bit of the BO field to 1
if the offset is negative. When extracting, we require that the y
bit be 1 and that the offset be positive, since if the y bit is 0
we just want to print the normal form of the instruction.
Power4 compatible targets use two bits, "a", and "t", instead of
the "y" bit. "at" == 00 => no hint, "at" == 01 => unpredictable,
"at" == 10 => not taken, "at" == 11 => taken. The "t" bit is 00001
in BO field, the "a" bit is 00010 for branch on CR(BI) and 01000
for branch on CTR. We only handle the taken/not-taken hint here.
Note that we don't relax the conditions tested here when
disassembling with -Many because insns using extract_bdm and
extract_bdp always occur in pairs. One or the other will always
be valid. */
static unsigned long
insert_bdm (unsigned long insn,
long value,
int dialect,
const char **errmsg ATTRIBUTE_UNUSED)
{
if ((dialect & PPC_OPCODE_POWER4) == 0)
{
if ((value & 0x8000) != 0)
insn |= 1 << 21;
}
else
{
if ((insn & (0x14 << 21)) == (0x04 << 21))
insn |= 0x02 << 21;
else if ((insn & (0x14 << 21)) == (0x10 << 21))
insn |= 0x08 << 21;
}
return insn | (value & 0xfffc);
}
static long
extract_bdm (unsigned long insn,
int dialect,
int *invalid)
{
if ((dialect & PPC_OPCODE_POWER4) == 0)
{
if (((insn & (1 << 21)) == 0) != ((insn & (1 << 15)) == 0))
*invalid = 1;
}
else
{