forked from acidanthera/OpenCorePkg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAes.c
executable file
·673 lines (584 loc) · 18.4 KB
/
Aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/** @file
OcCryptoLib
Copyright (c) 2018, savvas
All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
/**
Copyright (c) 2014-2018, kokke
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
**/
/**
This is an implementation of the AES algorithm, specifically CTR and CBC mode.
Block size can be chosen in OcCryptoLib.h.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
**/
#include <Library/BaseMemoryLib.h>
#include <Library/OcCryptoLib.h>
//
// The number of columns comprising a state in AES (Nb). This is a CONSTant in AES. Value=4
// The number of 32 bit words in a key (Nk).
// The number of rounds in AES Cipher (Nr).
//
#define Nb 4
#if CONFIG_AES_KEY_SIZE == 32
#define Nk 8
#define Nr 14
#elif CONFIG_AES_KEY_SIZE == 24
#define Nk 6
#define Nr 12
#elif CONFIG_AES_KEY_SIZE == 16
#define Nk 4
#define Nr 10
#endif
//
// state - array holding the intermediate results during decryption.
//
typedef UINT8 AES_INTERNAL_STATE[4][4];
//
// The lookup-tables are marked CONST so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
//
STATIC CONST UINT8 Sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
STATIC CONST UINT8 RsBox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
//
// The round CONSTant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
//
STATIC CONST UINT8 Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these CONSTants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
//
// Private functions:
//
#define GetSboxValue(num) (Sbox[(num)])
#define GetSBoxInvert(num) (RsBox[(num)])
//
// This function produces Nb(Nr+1) round keys. The round keys are used in each
// round to decrypt the states.
//
STATIC
VOID
KeyExpansion (
OUT UINT8 *RoundKey,
IN CONST UINT8 *Key
)
{
UINT32 Index, J, K;
//
// Used for the column/row operations
//
UINT8 TempA[4];
//
// The first round key is the key itself.
//
for (Index = 0; Index < Nk; ++Index) {
RoundKey[(Index * 4) + 0] = Key[(Index * 4) + 0];
RoundKey[(Index * 4) + 1] = Key[(Index * 4) + 1];
RoundKey[(Index * 4) + 2] = Key[(Index * 4) + 2];
RoundKey[(Index * 4) + 3] = Key[(Index * 4) + 3];
}
//
// All other round keys are found from the previous round keys.
//
for (Index = Nk; Index < Nb * (Nr + 1); ++Index) {
K = (Index - 1) * 4;
TempA[0] = RoundKey[K + 0];
TempA[1] = RoundKey[K + 1];
TempA[2] = RoundKey[K + 2];
TempA[3] = RoundKey[K + 3];
if (Index % Nk == 0) {
//
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
//
//
// Function RotWord()
//
K = TempA[0];
TempA[0] = TempA[1];
TempA[1] = TempA[2];
TempA[2] = TempA[3];
TempA[3] = (UINT8) K;
//
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
//
//
// Function Subword()
//
TempA[0] = GetSboxValue (TempA[0]);
TempA[1] = GetSboxValue (TempA[1]);
TempA[2] = GetSboxValue (TempA[2]);
TempA[3] = GetSboxValue (TempA[3]);
TempA[0] = TempA[0] ^ Rcon[Index / Nk];
}
#if CONFIG_AES_KEY_SIZE == 32
if (Index % Nk == 4) {
//
// Function Subword()
//
TempA[0] = GetSboxValue (TempA[0]);
TempA[1] = GetSboxValue (TempA[1]);
TempA[2] = GetSboxValue (TempA[2]);
TempA[3] = GetSboxValue (TempA[3]);
}
#endif
J = Index * 4; K = (Index - Nk) * 4;
RoundKey[J + 0] = RoundKey[K + 0] ^ TempA[0];
RoundKey[J + 1] = RoundKey[K + 1] ^ TempA[1];
RoundKey[J + 2] = RoundKey[K + 2] ^ TempA[2];
RoundKey[J + 3] = RoundKey[K + 3] ^ TempA[3];
}
}
VOID
AesInitCtxIv (
OUT AES_CONTEXT *Context,
IN CONST UINT8 *Key,
IN CONST UINT8 *Iv
)
{
KeyExpansion (Context->RoundKey, Key);
CopyMem (Context->Iv, Iv, AES_BLOCK_SIZE);
}
VOID
AesSetCtxIv (
OUT AES_CONTEXT *Context,
IN CONST UINT8 *Iv
)
{
CopyMem (Context->Iv, Iv, AES_BLOCK_SIZE);
}
//
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
//
STATIC
VOID
AddRoundKey (
IN UINT8 Round,
IN OUT AES_INTERNAL_STATE *State,
IN CONST UINT8 *RoundKey
)
{
UINT8 I, J;
for (I = 0; I < 4; ++I) {
for (J = 0; J < 4; ++J) {
(*State)[I][J] ^= RoundKey[(Round * Nb * 4) + (I * Nb) + J];
}
}
}
//
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
//
STATIC
VOID
SubBytes (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 I, J;
for (I = 0; I < 4; ++I) {
for (J = 0; J < 4; ++J) {
(*State)[J][I] = GetSboxValue((*State)[J][I]);
}
}
}
//
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
//
STATIC
VOID
ShiftRows (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 Temp;
//
// Rotate first row 1 columns to left
//
Temp = (*State)[0][1];
(*State)[0][1] = (*State)[1][1];
(*State)[1][1] = (*State)[2][1];
(*State)[2][1] = (*State)[3][1];
(*State)[3][1] = Temp;
//
// Rotate second row 2 columns to left
//
Temp = (*State)[0][2];
(*State)[0][2] = (*State)[2][2];
(*State)[2][2] = Temp;
Temp = (*State)[1][2];
(*State)[1][2] = (*State)[3][2];
(*State)[3][2] = Temp;
//
// Rotate third row 3 columns to left
//
Temp = (*State)[0][3];
(*State)[0][3] = (*State)[3][3];
(*State)[3][3] = (*State)[2][3];
(*State)[2][3] = (*State)[1][3];
(*State)[1][3] = Temp;
}
STATIC
UINT8
XTime (
IN UINT8 X
)
{
return (UINT8) (((UINT32) X << 1u) ^ ((((UINT32) X >> 7u) & 1u) * 0x1bu));
}
//
// MixColumns function mixes the columns of the state matrix
//
STATIC
VOID
MixColumns (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 I, Tmp, Tm, T;
for (I = 0; I < 4; ++I) {
T = (*State)[I][0];
Tmp = (UINT8) ((UINT32) ((*State) [I][0]) ^ (UINT32) ((*State) [I][1])
^ (UINT32) ((*State) [I][2]) ^ (UINT32) ((*State) [I][3]));
Tm = (*State) [I][0] ^ (*State) [I][1];
Tm = XTime (Tm);
(*State) [I][0] ^= Tm ^ Tmp;
Tm = (*State)[I][1] ^ (*State)[I][2];
Tm = XTime (Tm);
(*State) [I][1] ^= Tm ^ Tmp;
Tm = (*State) [I][2] ^ (*State) [I][3];
Tm = XTime (Tm);
(*State) [I][2] ^= Tm ^ Tmp;
Tm = (*State)[I][3] ^ T ;
Tm = XTime (Tm);
(*State) [I][3] ^= Tm ^ Tmp ;
}
}
//
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to XTime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
//
#define Multiply(x, y) \
( (((y) & 1u) * (x)) ^ \
(((y)>>1u & 1u) * XTime(x)) ^ \
(((y)>>2u & 1u) * XTime(XTime(x))) ^ \
(((y)>>3u & 1u) * XTime(XTime(XTime(x)))) ^ \
(((y)>>4u & 1u) * XTime(XTime(XTime(XTime(x)))))) \
//
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
//
STATIC
VOID
InvMixColumns (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 I, A, B, C, D;
for (I = 0; I < 4; ++I) {
A = (*State) [I][0];
B = (*State) [I][1];
C = (*State) [I][2];
D = (*State) [I][3];
(*State)[I][0] = (UINT8) ((UINT32) Multiply(A, 0x0eu) ^ (UINT32) Multiply(B, 0x0bu)
^ (UINT32) Multiply(C, 0x0du) ^ (UINT32) Multiply(D, 0x09u));
(*State)[I][1] = (UINT8) ((UINT32) Multiply(A, 0x09u) ^ (UINT32) Multiply(B, 0x0eu)
^ (UINT32) Multiply(C, 0x0bu) ^ (UINT32) Multiply(D, 0x0du));
(*State)[I][2] = (UINT8) ((UINT32) Multiply(A, 0x0du) ^ (UINT32) Multiply(B, 0x09u)
^ (UINT32) Multiply(C, 0x0eu) ^ (UINT32) Multiply(D, 0x0bu));
(*State)[I][3] = (UINT8) ((UINT32) Multiply(A, 0x0bu) ^ (UINT32) Multiply(B, 0x0du)
^ (UINT32) Multiply(C, 0x09u) ^ (UINT32) Multiply(D, 0x0eu));
}
}
//
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
//
STATIC
VOID
InvSubBytes (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 I, J;
for (I = 0; I < 4; ++I) {
for (J = 0; J < 4; ++J) {
(*State)[J][I] = GetSBoxInvert ((*State)[J][I]);
}
}
}
STATIC
VOID
InvShiftRows (
IN OUT AES_INTERNAL_STATE *State
)
{
UINT8 Temp;
//
// Rotate first row 1 columns to right
//
Temp = (*State)[3][1];
(*State)[3][1] = (*State)[2][1];
(*State)[2][1] = (*State)[1][1];
(*State)[1][1] = (*State)[0][1];
(*State)[0][1] = Temp;
//
// Rotate second row 2 columns to right
//
Temp = (*State)[0][2];
(*State)[0][2] = (*State)[2][2];
(*State)[2][2] = Temp;
Temp = (*State)[1][2];
(*State)[1][2] = (*State)[3][2];
(*State)[3][2] = Temp;
//
// Rotate third row 3 columns to right
//
Temp = (*State)[0][3];
(*State)[0][3] = (*State)[1][3];
(*State)[1][3] = (*State)[2][3];
(*State)[2][3] = (*State)[3][3];
(*State)[3][3] = Temp;
}
//
// Cipher is the main function that encrypts the PlainText.
//
STATIC
VOID
Cipher (
IN OUT AES_INTERNAL_STATE *State,
IN CONST UINT8 *RoundKey
)
{
UINT8 Round;
//
// Add the First round key to the state before starting the rounds.
//
AddRoundKey(0, State, RoundKey);
//
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
//
for (Round = 1; Round < Nr; ++Round) {
SubBytes (State);
ShiftRows (State);
MixColumns (State);
AddRoundKey (Round, State, RoundKey);
}
//
// The last round is given below.
// The MixColumns function is not here in the last round.
//
SubBytes (State);
ShiftRows (State);
AddRoundKey (Nr, State, RoundKey);
}
STATIC
VOID
InvCipher (
IN OUT AES_INTERNAL_STATE *State,
IN CONST UINT8 *RoundKey
)
{
UINT8 Round;
//
// Add the First round key to the state before starting the rounds.
//
AddRoundKey (Nr, State, RoundKey);
//
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
//
for (Round = (Nr - 1); Round > 0; --Round) {
InvShiftRows (State);
InvSubBytes (State);
AddRoundKey (Round, State, RoundKey);
InvMixColumns (State);
}
//
// The last round is given below.
// The MixColumns function is not here in the last round.
//
InvShiftRows (State);
InvSubBytes (State);
AddRoundKey (0, State, RoundKey);
}
STATIC
VOID
XorWithIv (
IN OUT UINT8 *Buf,
IN CONST UINT8 *Iv
)
{
UINT8 I;
//
// The block in AES is always 128bit no matter the key size
//
for (I = 0; I < AES_BLOCK_SIZE; ++I) {
Buf[I] ^= Iv[I];
}
}
//
// Public functions
//
VOID
AesCbcEncryptBuffer (
IN OUT AES_CONTEXT *Context,
IN OUT UINT8 *Data,
IN UINT32 Len
)
{
UINT32 I;
UINT8 *Iv;
Iv = Context->Iv;
for (I = 0; I < Len; I += AES_BLOCK_SIZE) {
XorWithIv (Data, Iv);
Cipher ((AES_INTERNAL_STATE *) Data, Context->RoundKey);
Iv = Data;
Data += AES_BLOCK_SIZE;
}
//
// Store Iv in Context for next call
//
CopyMem (Context->Iv, Iv, AES_BLOCK_SIZE);
}
VOID
AesCbcDecryptBuffer (
IN OUT AES_CONTEXT *Context,
IN OUT UINT8 *Data,
IN UINT32 Len
)
{
UINT32 I;
UINT8 StoreNextIv[AES_BLOCK_SIZE];
for (I = 0; I < Len; I += AES_BLOCK_SIZE) {
CopyMem (StoreNextIv, Data, AES_BLOCK_SIZE);
InvCipher ((AES_INTERNAL_STATE *) Data, Context->RoundKey);
XorWithIv (Data, Context->Iv);
CopyMem (Context->Iv, StoreNextIv, AES_BLOCK_SIZE);
Data += AES_BLOCK_SIZE;
}
}
//
// Symmetrical operation: same function for encrypting as for decrypting.
// Note any IV/nonce should never be reused with the same key
//
VOID
AesCtrXcryptBuffer (
IN OUT AES_CONTEXT *Context,
IN OUT UINT8 *Data,
IN UINT32 Len
)
{
UINT8 Buffer[AES_BLOCK_SIZE];
UINT32 I;
INT32 Bi;
for (I = 0, Bi = AES_BLOCK_SIZE; I < Len; ++I, ++Bi) {
//
// We need to regen xor compliment in buffer
//
if (Bi == AES_BLOCK_SIZE) {
CopyMem (Buffer, Context->Iv, AES_BLOCK_SIZE);
Cipher ((AES_INTERNAL_STATE *) Buffer, Context->RoundKey);
//
// Increment Iv and handle overflow
//
for (Bi = (AES_BLOCK_SIZE - 1); Bi >= 0; --Bi) {
//
// Inc will owerflow
//
if (Context->Iv[Bi] == 255) {
Context->Iv[Bi] = 0;
continue;
}
Context->Iv[Bi] += 1;
break;
}
Bi = 0;
}
Data[I] = (Data[I] ^ Buffer[Bi]);
}
}