forked from muhanzhang/pytorch_DGCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_DGCNN.sh
executable file
·113 lines (109 loc) · 2.65 KB
/
run_DGCNN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/bin/bash
# input arguments
DATA="${1-MUTAG}" # MUTAG, ENZYMES, NCI1, NCI109, DD, PTC, PROTEINS, COLLAB, IMDBBINARY, IMDBMULTI
fold=${2-1} # which fold as testing data
test_number=${3-0} # if specified, use the last test_number graphs as test data
# general settings
gm=DGCNN # model
gpu_or_cpu=gpu
GPU=0 # select the GPU number
CONV_SIZE="32-32-32-1"
sortpooling_k=0.6 # If k <= 1, then k is set to an integer so that k% of graphs have nodes less than this integer
FP_LEN=0 # final dense layer's input dimension, decided by data
n_hidden=128 # final dense layer's hidden size
bsize=1 # batch size, set to 50 or 100 to accelerate training
dropout=True
# dataset-specific settings
case ${DATA} in
MUTAG)
num_epochs=300
learning_rate=0.0001
;;
ENZYMES)
num_epochs=500
learning_rate=0.0001
;;
NCI1)
num_epochs=200
learning_rate=0.0001
;;
NCI109)
num_epochs=200
learning_rate=0.0001
;;
DD)
num_epochs=200
learning_rate=0.00001
;;
PTC)
num_epochs=200
learning_rate=0.0001
;;
PROTEINS)
num_epochs=100
learning_rate=0.00001
;;
COLLAB)
num_epochs=300
learning_rate=0.0001
sortpooling_k=0.9
;;
IMDBBINARY)
num_epochs=300
learning_rate=0.0001
sortpooling_k=0.9
;;
IMDBMULTI)
num_epochs=500
learning_rate=0.0001
sortpooling_k=0.9
;;
*)
num_epochs=500
learning_rate=0.00001
;;
esac
if [ ${fold} == 0 ]; then
echo "Running 10-fold cross validation"
start=`date +%s`
for i in $(seq 1 10)
do
CUDA_VISIBLE_DEVICES=${GPU} python main.py \
-seed 1 \
-data $DATA \
-fold $i \
-learning_rate $learning_rate \
-num_epochs $num_epochs \
-hidden $n_hidden \
-latent_dim $CONV_SIZE \
-sortpooling_k $sortpooling_k \
-out_dim $FP_LEN \
-batch_size $bsize \
-gm $gm \
-mode $gpu_or_cpu \
-dropout $dropout
done
stop=`date +%s`
echo "End of cross-validation"
echo "The total running time is $[stop - start] seconds."
echo "The accuracy results for ${DATA} are as follows:"
tail -10 ${DATA}_acc_results.txt
echo "Average accuracy and std are"
tail -10 ${DATA}_acc_results.txt | awk '{ sum += $1; sum2 += $1*$1; n++ } END { if (n > 0) print sum / n; print sqrt(sum2 / n - (sum/n) * (sum/n)); }'
else
CUDA_VISIBLE_DEVICES=${GPU} python main.py \
-seed 1 \
-data $DATA \
-fold $fold \
-learning_rate $learning_rate \
-num_epochs $num_epochs \
-hidden $n_hidden \
-latent_dim $CONV_SIZE \
-sortpooling_k $sortpooling_k \
-out_dim $FP_LEN \
-batch_size $bsize \
-gm $gm \
-mode $gpu_or_cpu \
-dropout $dropout \
-test_number ${test_number}
fi