forked from thinkall/Contrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
410 lines (367 loc) · 17.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# -*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = "0.99"
import paddle.fluid as fluid
import paddle
import logging
import math
import numpy as np
import shutil
import os
from PIL import ImageOps, Image, ImageEnhance, ImageFilter
from datetime import datetime
from danet import DANet
from options import Options
from utils.cityscapes_data import cityscapes_train
from utils.cityscapes_data import cityscapes_val
from utils.cityscapes_data import cityscapes_test
from utils.lr_scheduler import Lr
from iou import IOUMetric
# globals
data_mean = np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
data_std = np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
def pad_single_image(image, crop_size):
w, h = image.size
pad_h = crop_size - h if h < crop_size else 0
pad_w = crop_size - w if w < crop_size else 0
image = ImageOps.expand(image, border=(0, 0, pad_w, pad_h), fill=0)
assert (image.size[0] >= crop_size and image.size[1] >= crop_size)
return image
def crop_image(image, h0, w0, h1, w1):
return image.crop((w0, h0, w1, h1))
def flip_left_right_image(image):
return image.transpose(Image.FLIP_LEFT_RIGHT)
def resize_image(image, out_h, out_w, mode=Image.BILINEAR):
return image.resize((out_w, out_h), mode)
def mapper_image(image):
image_array = np.array(image)
image_array = image_array.transpose((2, 0, 1))
image_array = image_array / 255.0
image_array = (image_array - data_mean) / data_std
image_array = image_array.astype('float32')
image_array = image_array[np.newaxis, :]
return image_array
def get_model(args):
model = DANet('DANet',
backbone=args.backbone,
num_classes=args.num_classes,
batch_size=1,
dilated=args.dilated,
multi_grid=args.multi_grid,
multi_dilation=args.multi_dilation)
return model
def copy_model(path, new_path):
shutil.rmtree(new_path, ignore_errors=True)
shutil.copytree(path, new_path)
model_path = os.path.join(new_path, '__model__')
if os.path.exists(model_path):
os.remove(model_path)
def mean_iou(pred, label, num_classes=19):
label = fluid.layers.elementwise_min(fluid.layers.cast(label, np.int32),
fluid.layers.assign(np.array([num_classes], dtype=np.int32)))
label_ig = (label == num_classes).astype('int32')
label_ng = (label != num_classes).astype('int32')
pred = fluid.layers.cast(fluid.layers.argmax(pred, axis=1), 'int32')
pred = pred * label_ng + label_ig * num_classes
miou, wrong, correct = fluid.layers.mean_iou(pred, label, num_classes + 1)
label.stop_gradient = True
return miou, wrong, correct
def change_model_executor_to_dygraph(args):
temp_image = fluid.layers.data(name='temp_image', shape=[3, 224, 224], dtype='float32')
model = get_model(args)
y = model(temp_image)
if args.cuda:
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
place = fluid.CUDAPlace(gpu_id) if args.cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
model_path = args.save_model
assert os.path.exists(model_path), "Please check whether the executor model file address {} exists. " \
"Note: the executor model file is multiple files.".format(model_path)
fluid.io.load_persistables(exe, model_path, fluid.default_main_program())
print('load executor train model successful, start change!')
param_list = fluid.default_main_program().block(0).all_parameters()
param_name_list = [p.name for p in param_list]
temp_dict = {}
for name in param_name_list:
tensor = fluid.global_scope().find_var(name).get_tensor()
npt = np.asarray(tensor)
temp_dict[name] = npt
del model
with fluid.dygraph.guard():
x = np.random.randn(1, 3, 224, 224).astype('float32')
x = fluid.dygraph.to_variable(x)
model = get_model(args)
y = model(x)
new_param_dict = {}
for k, v in temp_dict.items():
value = v
value_shape = value.shape
name = k
tensor = fluid.layers.create_parameter(shape=value_shape,
name=name,
dtype='float32',
default_initializer=fluid.initializer.NumpyArrayInitializer(value))
new_param_dict[name] = tensor
assert len(new_param_dict) == len(
model.state_dict()), "The number of parameters is not equal. Loading parameters failed, " \
"Please check whether the model is consistent!"
model.set_dict(new_param_dict)
fluid.save_dygraph(model.state_dict(), model_path)
del model
del temp_dict
print('change executor model to dygraph successful!')
def eval(args):
if args.change_executor_to_dygraph:
change_model_executor_to_dygraph(args)
with fluid.dygraph.guard():
num_classes = args.num_classes
base_size = args.base_size
crop_size = args.crop_size
multi_scales = args.multi_scales
flip = args.flip
if not multi_scales:
scales = [1.0]
else:
# scales = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.2]
scales = [0.5, 0.75, 1.0, 1.25, 1.35, 1.5, 1.75, 2.0, 2.2] # It might work better
if len(scales) == 1: # single scale
# stride_rate = 2.0 / 3.0
stride_rate = 1.0 / 2.0 # It might work better
else:
stride_rate = 1.0 / 2.0
stride = int(crop_size * stride_rate) # slid stride
model = get_model(args)
x = np.random.randn(1, 3, 224, 224).astype('float32')
x = fluid.dygraph.to_variable(x)
y = model(x)
iou = IOUMetric(num_classes)
model_path = args.save_model
# load_better_model
if paddle.__version__ == '1.5.2' and args.load_better_model:
assert os.path.exists(model_path), "your input save_model: {} ,but '{}' is not exists".format(
model_path, model_path)
print('better model exist!')
new_model_path = 'dygraph/' + model_path
copy_model(model_path, new_model_path)
model_param, _ = fluid.dygraph.load_persistables(new_model_path)
model.load_dict(model_param)
elif args.load_better_model:
assert os.path.exists(model_path + '.pdparams'), "your input save_model: {} ,but '{}' is not exists".format(
model_path, model_path + '.pdparams')
print('better model exist!')
model_param, _ = fluid.dygraph.load_dygraph(model_path)
model.load_dict(model_param)
else:
raise ValueError('Please set --load_better_model!')
assert len(model_param) == len(
model.state_dict()), "The number of parameters is not equal. Loading parameters failed, " \
"Please check whether the model is consistent!"
model.eval()
prev_time = datetime.now()
# reader = cityscapes_test(split='test', base_size=2048, crop_size=1024, scale=True, xmap=True)
reader = cityscapes_test(split='val', base_size=2048, crop_size=1024, scale=True, xmap=True)
print('MultiEvalModule: base_size {}, crop_size {}'.
format(base_size, crop_size))
print('scales: {}'.format(scales))
print('val ing...')
logging.basicConfig(level=logging.INFO,
filename='DANet_{}_eval_dygraph.log'.format(args.backbone),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logging.info('DANet')
logging.info(args)
palette = pat()
for data in reader():
image = data[0]
label_path = data[1] # val_label is a picture, test_label is a path
label = Image.open(label_path, mode='r') # val_label is a picture, test_label is a path
save_png_path = label_path.replace('val', '{}_val'.format(args.backbone)).replace('test', '{}_test'.format(
args.backbone))
label_np = np.array(label)
w, h = image.size # h 1024, w 2048
scores = np.zeros(shape=[num_classes, h, w], dtype='float32')
for scale in scales:
long_size = int(math.ceil(base_size * scale)) # long_size
if h > w:
height = long_size
width = int(1.0 * w * long_size / h + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * h * long_size / w + 0.5)
short_size = height
cur_img = resize_image(image, height, width)
# pad
if long_size <= crop_size:
pad_img = pad_single_image(cur_img, crop_size)
pad_img = mapper_image(pad_img)
pad_img = fluid.dygraph.to_variable(pad_img)
pred1, pred2, pred3 = model(pad_img)
pred1 = pred1.numpy()
outputs = pred1[:, :, :height, :width]
if flip:
pad_img_filp = flip_left_right_image(cur_img)
pad_img_filp = pad_single_image(pad_img_filp, crop_size) # pad
pad_img_filp = mapper_image(pad_img_filp)
pad_img_filp = fluid.dygraph.to_variable(pad_img_filp)
pred1, pred2, pred3 = model(pad_img_filp)
pred1 = fluid.layers.reverse(pred1, axis=3)
pred1 = pred1.numpy()
outputs += pred1[:, :, :height, :width]
else:
if short_size < crop_size:
# pad if needed
pad_img = pad_single_image(cur_img, crop_size)
else:
pad_img = cur_img
pw, ph = pad_img.size
assert (ph >= height and pw >= width)
# slid window
h_grids = int(math.ceil(1.0 * (ph - crop_size) / stride)) + 1
w_grids = int(math.ceil(1.0 * (pw - crop_size) / stride)) + 1
outputs = np.zeros(shape=[1, num_classes, ph, pw], dtype='float32')
count_norm = np.zeros(shape=[1, 1, ph, pw], dtype='int32')
for idh in range(h_grids):
for idw in range(w_grids):
h0 = idh * stride
w0 = idw * stride
h1 = min(h0 + crop_size, ph)
w1 = min(w0 + crop_size, pw)
crop_img = crop_image(pad_img, h0, w0, h1, w1)
pad_crop_img = pad_single_image(crop_img, crop_size)
pad_crop_img = mapper_image(pad_crop_img)
pad_crop_img = fluid.dygraph.to_variable(pad_crop_img)
pred1, pred2, pred3 = model(pad_crop_img) # shape [1, num_class, h, w]
pred = pred1.numpy() # channel, h, w
outputs[:, :, h0:h1, w0:w1] += pred[:, :, 0:h1 - h0, 0:w1 - w0]
count_norm[:, :, h0:h1, w0:w1] += 1
if flip:
pad_img_filp = flip_left_right_image(crop_img)
pad_img_filp = pad_single_image(pad_img_filp, crop_size) # pad
pad_img_array = mapper_image(pad_img_filp)
pad_img_array = fluid.dygraph.to_variable(pad_img_array)
pred1, pred2, pred3 = model(pad_img_array)
pred1 = fluid.layers.reverse(pred1, axis=3)
pred = pred1.numpy()
outputs[:, :, h0:h1, w0:w1] += pred[:, :, 0:h1 - h0, 0:w1 - w0]
count_norm[:, :, h0:h1, w0:w1] += 1
assert ((count_norm == 0).sum() == 0)
outputs = outputs / count_norm
outputs = outputs[:, :, :height, :width]
outputs = fluid.dygraph.to_variable(outputs)
outputs = fluid.layers.resize_bilinear(outputs, out_shape=[h, w])
score = outputs.numpy()[0]
scores += score # the sum of all scales, shape: [channel, h, w]
pred = np.argmax(score, axis=0).astype('uint8')
picture_path = '{}'.format(save_png_path).replace('.png', '_scale_{}'.format(scale))
save_png(pred, palette, picture_path)
pred = np.argmax(scores, axis=0).astype('uint8')
picture_path = '{}'.format(save_png_path).replace('.png', '_scores')
save_png(pred, palette, picture_path)
iou.add_batch(pred, label_np) # cal iou
print('eval done!')
logging.info('eval done!')
acc, acc_cls, iu, mean_iu, fwavacc, kappa = iou.evaluate()
print('acc = {}'.format(acc))
logging.info('acc = {}'.format(acc))
print('acc_cls = {}'.format(acc_cls))
logging.info('acc_cls = {}'.format(acc_cls))
print('iu = {}'.format(iu))
logging.info('iu = {}'.format(iu))
print('mean_iou -- 255 = {}'.format(mean_iu))
logging.info('mean_iou --255 = {}'.format(mean_iu))
print('mean_iou = {}'.format(np.nanmean(iu[:-1]))) # realy iou
logging.info('mean_iou = {}'.format(np.nanmean(iu[:-1])))
print('fwavacc = {}'.format(fwavacc))
logging.info('fwavacc = {}'.format(fwavacc))
print('kappa = {}'.format(kappa))
logging.info('kappa = {}'.format(kappa))
cur_time = datetime.now()
h, remainder = divmod((cur_time - prev_time).seconds, 3600)
m, s = divmod(remainder, 60)
time_str = "Time %02d:%02d:%02d" % (h, m, s)
print('val ' + time_str)
logging.info('val ' + time_str)
def save_png(pred_value, palette, name):
if isinstance(pred_value, np.ndarray):
if pred_value.ndim == 3:
batch_size = pred_value.shape[0]
if batch_size == 1:
pred_value = pred_value.squeeze(axis=0)
image = Image.fromarray(pred_value).convert('P')
image.putpalette(palette)
save_path = '{}.png'.format(name)
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image.save(save_path)
else:
for batch_id in range(batch_size):
value = pred_value[batch_id]
image = Image.fromarray(value).convert('P')
image.putpalette(palette)
save_path = '{}.png'.format(name[batch_id])
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image.save(save_path)
elif pred_value.ndim == 2:
image = Image.fromarray(pred_value).convert('P')
image.putpalette(palette)
save_path = '{}.png'.format(name)
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image.save(save_path)
else:
raise ValueError('Only support nd-array')
def save_png_test(path):
im = Image.open(path)
im_array = np.array(im).astype('uint8')
save_png(im_array, pat(), 'save_png_test')
def pat():
palette = []
for i in range(256):
palette.extend((i, i, i))
palette[:3 * 19] = np.array([[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[70, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32]], dtype='uint8').flatten()
return palette
if __name__ == '__main__':
options = Options()
args = options.parse()
options.print_args()
eval(args)