forked from falcomfanslz/JData
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_item_table.py
107 lines (80 loc) · 3.4 KB
/
create_item_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#-*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from collections import Counter
ACTION_201602_FILE = "data/JData_Action_201602.csv"
ACTION_201603_FILE = "data/JData_Action_201603.csv"
ACTION_201603_EXTRA_FILE = "data/JData_Action_201603_extra.csv"
ACTION_201604_FILE = "data/JData_Action_201604.csv"
COMMENT_FILE = "data/JData_Comment.csv"
PRODUCT_FILE = "data/JData_Product.csv"
USER_FILE = "data/JData_User.csv"
NEW_USER_FILE = "data/JData_User_New.csv"
ITEM_TABLE_FILE = "data/item_table.csv"
def get_from_jdata_product():
df_item = pd.read_csv(PRODUCT_FILE, header=0)
return df_item
# apply type count
def add_type_count(group):
behavior_type = group.type.astype(int)
type_cnt = Counter(behavior_type)
group['browse_num'] = type_cnt[1]
group['addcart_num'] = type_cnt[2]
group['delcart_num'] = type_cnt[3]
group['buy_num'] = type_cnt[4]
group['favor_num'] = type_cnt[5]
group['click_num'] = type_cnt[6]
return group[['sku_id', 'browse_num', 'addcart_num',
'delcart_num', 'buy_num', 'favor_num',
'click_num']]
def get_from_action_data(fname, chunk_size=100000):
reader = pd.read_csv(fname, header=0, iterator=True)
chunks = []
loop = True
while loop:
try:
chunk = reader.get_chunk(chunk_size)[["sku_id", "type"]]
chunks.append(chunk)
except StopIteration:
loop = False
print("Iteration is stopped")
df_ac = pd.concat(chunks, ignore_index=True)
df_ac = df_ac.groupby(['sku_id'], as_index=False).apply(add_type_count)
# Select unique row
df_ac = df_ac.drop_duplicates('sku_id')
return df_ac
def get_from_jdata_comment():
df_cmt = pd.read_csv(COMMENT_FILE, header=0)
df_cmt['dt'] = pd.to_datetime(df_cmt['dt'])
# find latest comment index
idx = df_cmt.groupby(['sku_id'])['dt'].transform(max) == df_cmt['dt']
df_cmt = df_cmt[idx]
return df_cmt[['sku_id', 'comment_num',
'has_bad_comment', 'bad_comment_rate']]
def merge_action_data():
df_ac = []
df_ac.append(get_from_action_data(fname=ACTION_201602_FILE))
df_ac.append(get_from_action_data(fname=ACTION_201603_FILE))
df_ac.append(get_from_action_data(fname=ACTION_201603_EXTRA_FILE))
df_ac.append(get_from_action_data(fname=ACTION_201604_FILE))
df_ac = pd.concat(df_ac, ignore_index=True)
df_ac = df_ac.groupby(['sku_id'], as_index=False).sum()
df_ac['buy_addcart_ratio'] = df_ac['buy_num'] / df_ac['addcart_num']
df_ac['buy_browse_ratio'] = df_ac['buy_num'] / df_ac['browse_num']
df_ac['buy_click_ratio'] = df_ac['buy_num'] / df_ac['click_num']
df_ac['buy_favor_ratio'] = df_ac['buy_num'] / df_ac['favor_num']
df_ac.ix[df_ac['buy_addcart_ratio'] > 1., 'buy_addcart_ratio'] = 1.
df_ac.ix[df_ac['buy_browse_ratio'] > 1., 'buy_browse_ratio'] = 1.
df_ac.ix[df_ac['buy_click_ratio'] > 1., 'buy_click_ratio'] = 1.
df_ac.ix[df_ac['buy_favor_ratio'] > 1., 'buy_favor_ratio'] = 1.
return df_ac
if __name__ == "__main__":
item_base = get_from_jdata_product()
item_behavior = merge_action_data()
item_comment = get_from_jdata_comment()
# SQL: left join
item_behavior = pd.merge(
item_base, item_behavior, on=['sku_id'], how='left')
item_behavior = pd.merge(
item_behavior, item_comment, on=['sku_id'], how='left')
item_behavior.to_csv(ITEM_TABLE_FILE, index=False)