forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RefImplementations.cc
2211 lines (2058 loc) · 75.8 KB
/
RefImplementations.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include "./RefImplementations.h"
#include "fbgemm/FbgemmBuild.h"
#include "fbgemm/FbgemmConvert.h"
#include "fbgemm/Types.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <iostream>
#include <numeric>
#include <thread>
using namespace std;
namespace fbgemm {
typedef union {
uint32_t I;
float F;
} fint32;
// Thread-safe random number generator
//
// Return a random 32bit integer using xoshiro128++
// http://prng.di.unimi.it/xoshiro128plusplus.c
inline uint32_t rnd128_next(int idx, int vlen) {
constexpr int VLEN_MAX = 16; // max vector size
alignas(64) static thread_local uint32_t g_rnd128_buffer[4 * VLEN_MAX];
static thread_local bool g_rnd128_initialized = false;
// Splitmix64: http://prng.di.unimi.it/splitmix64.c
auto rnd128_init_next = [](uint64_t& x) {
uint64_t z = (x += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
};
auto rotl = [](const uint32_t x, int k) {
return (x << k) | (x >> (32 - k));
};
if (!g_rnd128_initialized) {
// Initialize rand buffer with uniq values per thread
uint64_t h0 = std::hash<std::thread::id>{}(std::this_thread::get_id());
for (auto i = 0; i < 4; ++i) {
// Use thread hash as seed
g_rnd128_buffer[i * VLEN_MAX] = rnd128_init_next(h0);
uint64_t h1 = g_rnd128_buffer[i * VLEN_MAX];
for (auto v = 1; v < VLEN_MAX; ++v) {
g_rnd128_buffer[i * VLEN_MAX + v] = rnd128_init_next(h1);
}
}
g_rnd128_initialized = true;
}
const uint32_t result =
rotl(g_rnd128_buffer[idx] + g_rnd128_buffer[3 * vlen + idx], 7) +
g_rnd128_buffer[idx];
const uint32_t t = g_rnd128_buffer[1 * vlen + idx] << 9;
g_rnd128_buffer[2 * vlen + idx] ^= g_rnd128_buffer[0 * vlen + idx];
g_rnd128_buffer[3 * vlen + idx] ^= g_rnd128_buffer[1 * vlen + idx];
g_rnd128_buffer[1 * vlen + idx] ^= g_rnd128_buffer[2 * vlen + idx];
g_rnd128_buffer[0 * vlen + idx] ^= g_rnd128_buffer[3 * vlen + idx];
g_rnd128_buffer[2 * vlen + idx] ^= t;
g_rnd128_buffer[3 * vlen + idx] = rotl(g_rnd128_buffer[3 * vlen + idx], 11);
return result;
}
void FloatToFloat16_ref(
const float* src,
float16* dst,
size_t size,
bool do_clip) {
constexpr float FP16_MAX = 65504.f;
if (do_clip) {
for (size_t i = 0; i < size; i++) {
float cur_src = std::max(-FP16_MAX, std::min(src[i], FP16_MAX));
dst[i] = cpu_float2half_rn(cur_src);
}
} else {
for (size_t i = 0; i < size; i++) {
dst[i] = cpu_float2half_rn(src[i]);
}
}
}
void Float16ToFloat_ref(const float16* src, float* dst, size_t size) {
for (size_t i = 0; i < size; i++) {
dst[i] = cpu_half2float(src[i]);
}
}
void FloatToBfloat16_ref(const float* src, bfloat16* dst, size_t size) {
for (size_t i = 0; i < size; i++) {
// Add 2^15 and right shift 16 to do round-nearest
dst[i] = (*reinterpret_cast<const uint32_t*>(src + i) + (1 << 15)) >> 16;
}
}
void Bfloat16ToFloat_ref(const bfloat16* src, float* dst, size_t size) {
for (size_t i = 0; i < size; i++) {
uint32_t val_fp32 =
static_cast<uint32_t>(reinterpret_cast<const uint16_t*>(src)[i]) << 16;
reinterpret_cast<uint32_t*>(dst)[i] = val_fp32;
}
}
void FloatToFloat8_ref(
const float input,
uint8_t* output,
int exponent_bits,
int exponent_bias) {
float max_pos = (1 << ((1 << exponent_bits) - 2 - exponent_bias)) *
(2 - std::pow(2, exponent_bits - 7));
int mantissa_bits = 7 - exponent_bits;
fint32 val_out, bouncer, smallest_normal;
val_out.F = input;
uint32_t sign_bit = val_out.I & 0x80000000;
val_out.I = val_out.I & 0x7FFFFFFF;
val_out.F = fminf(val_out.F, max_pos);
smallest_normal.I = (127 - exponent_bias + 1)
<< 23; // smallest hfp8 normal number in FP32
// I don't know if the input "min_pos" is the smallest denormalized number
// or the smallest normalized number. The test below needs to be done with
// the smallest normal number, which is the numerical value 2^(1-bias)
// The conversion for denormalized values are slightly different. HFP8 is so
// low precision that gradual underflow is probably crucial
if (val_out.F >= smallest_normal.F) {
// Use round to nearest even. We make use of the standard rounding mechanism
// in FP32 rather than rounding the mantissa and handling tie-to-even and
// incrementing exponent We want to round of 23-mbits of the FP32 value
// val_in This can be done by adding a power of 2 exactly 23-mbits larger
// than the exponent of val_in This forces val_in to be moved to the right
// and rounding exact at the location corresponding to having mbits of
// explicit mantissa left
bouncer.I = (val_out.I & 0xFF800000) + ((23 - mantissa_bits) << 23);
val_out.F = (bouncer.F + val_out.F) - bouncer.F;
// adding the bouncer rounds off bits, and subtracting bouncer
// leaves the desired value, albeit in FP32 encoding
// All we need is to change the exponent encoding to using "bias"
val_out.I = uint32_t(val_out.I - ((127 - exponent_bias) << 23))
<< (8 - exponent_bits);
val_out.I =
((val_out.I | sign_bit) >>
24); // the 8 lsbs is the desired HFP8 encoding
} else {
// When the value is in the denormal range, IEEE numbers essentially becomes
// a fixed point number. The lsb is the smallest non-zero number
// 2^(1-bias-mbits) Hence, we define the bouncer so that its lsb is this
// smallest non-zero number Adding the input to this bouncer forces rounding
// to occur appropriately Also, in this situation, after adding the bouncer,
// the 8 least significant bits of the sum is already the HFP8 encoding of
// the desired result. Just need to restore the sign bit
bouncer.I = (127 + (23 + (1 - exponent_bias - mantissa_bits))) << 23;
val_out.F = bouncer.F + val_out.F;
val_out.I = val_out.I | (sign_bit >> 24);
}
*output = val_out.I; // get the 8 lsbs
}
void Float8ToFloat_ref(
const uint8_t input,
float* output,
int exponent_bits,
int exponent_bias) {
fint32 val_out, sign, multiplier;
sign.I = (input & 0x80) << 24;
val_out.I = (input & 0x7F) << (24 - (8 - exponent_bits));
// so that the mantissa bits start at the mantissa bit positions of FP32
// encoding
// Let the hfp8 mantissa bits correspond to the value frac, 0 <= frac < 1
// So if the hfp8 value is a normal number, it's value is 2^e x (1+frac)
// where e is its (true, unbiased) exponent
// If the hfp8 value is denormal, the value is 2^(1-bias) x frac
// However, the bit pattern in the 8-bit exponent field of val_out.F
// is bias+e when hfp8 is normal, and 0 when hfp8 is subnormal.
// So, as an FP32 value, when hfp8 is normal, val_out.F represents the value
// of 2^(bias+e-127) * (1+frac)
// And when hfp8 is subnormal, val_out.F is also subnormal, and represents the
// value of 2^(-126) * frac In either case, val_out.F corresponds to
// 2^(bias-127) * (value of hfp8 input) Thus, if we multiply val_out.F by
// 2^(127-bias), we obtain the hfp8 value as an FP32 number
multiplier.I = (127 + (127 - exponent_bias))
<< 23; // multiplier.F is 2^(127-bias)
val_out.F *= multiplier.F;
val_out.I |= sign.I;
*output = val_out.F;
}
void requantize_u8acc32_ref(
int M,
int N,
int ld,
const int32_t* inp,
uint8_t* out,
int32_t C_multiplier,
int32_t C_right_shift,
int32_t C_zero_point,
int32_t A_zero_point,
int32_t B_zero_point,
const int32_t* row_offsets,
const int32_t* col_offsets,
const int32_t* bias,
bool fuse_relu) {
int64_t nudge = 1ll << std::max(0, C_right_shift - 1);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int32_t raw = inp[i * ld + j];
if (A_zero_point) {
raw -= A_zero_point * col_offsets[j];
}
if (B_zero_point) {
raw -= B_zero_point * row_offsets[i];
}
if (bias) {
raw += bias[j];
}
int64_t ab_64 =
static_cast<int64_t>(raw) * static_cast<int64_t>(C_multiplier);
int64_t rounded = ((ab_64 + nudge) >> C_right_shift) + C_zero_point;
out[i * ld + j] = std::max(
fuse_relu ? static_cast<int64_t>(C_zero_point) : 0l,
std::min(static_cast<int64_t>(255l), rounded));
}
}
}
void requantize_u8acc32_ref(
int M,
int N,
int ld,
const int32_t* inp,
uint8_t* out,
const float* C_multiplier,
int32_t C_zero_point,
int32_t A_zero_point,
const int32_t* B_zero_point,
const int32_t* row_offsets,
const int32_t* col_offsets,
const int32_t* bias,
int ncols_per_quant_group,
bool fuse_relu) {
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int32_t raw = inp[i * ld + j];
if (A_zero_point) {
raw -= A_zero_point * col_offsets[j];
}
raw -= B_zero_point[j / ncols_per_quant_group] * row_offsets[i];
if (bias) {
raw += bias[j];
}
float result = raw * C_multiplier[j / ncols_per_quant_group];
long rounded = lrintf(result) + C_zero_point;
out[i * ld + j] = std::max(
fuse_relu ? static_cast<long>(C_zero_point) : 0l,
std::min(255l, rounded));
}
}
}
void matmul_u8i8acc32_ref(
int M,
int N,
int K,
int lda,
int ldb,
int ldc,
const uint8_t* Aint8,
const int8_t* Bint8,
int32_t* Cint32) {
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int32_t sum = 0;
for (int k = 0; k < K; ++k) {
sum += static_cast<int32_t>(Aint8[i * lda + k]) *
static_cast<int32_t>(Bint8[k * ldb + j]);
}
Cint32[i * ldc + j] = sum;
}
}
}
void matmul_u8i8acc16_ref(
int M,
int N,
int K,
int lda,
int ldb,
int ldc,
int brow,
const uint8_t* Aint8,
const int8_t* Bint8,
int32_t* Cint32) {
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int32_t sum = 0, sum_32bit = 0;
for (int k = 0; k < K; k += 2) {
int a0 = Aint8[i * lda + k];
int b0 = Bint8[k * ldb + j];
int a1 = 0, b1 = 0;
if (k + 1 < K) {
a1 = Aint8[i * lda + k + 1];
b1 = Bint8[(k + 1) * ldb + j];
}
sum = clip_16bit(sum + clip_16bit(a0 * b0 + a1 * b1));
if ((k % brow) == (brow - 2)) {
sum_32bit += sum;
sum = 0;
}
}
Cint32[i * ldc + j] = sum_32bit + sum;
}
}
}
void cblas_sgemm_ref(
const matrix_op_t transa,
const matrix_op_t transb,
const int m,
const int n,
const int k,
float alpha,
const float* Afp32,
int lda,
const float* Bfp32,
int ldb,
float beta,
float* Cfp32,
int ldc) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
float sum = 0;
for (int p = 0; p < k; ++p) {
float a =
(transa == matrix_op_t::NoTranspose ? Afp32[i * lda + p]
: Afp32[p * lda + i]);
float b =
(transb == matrix_op_t::NoTranspose ? Bfp32[p * ldb + j]
: Bfp32[j * ldb + p]);
sum += a * b;
}
if (beta == 0) {
Cfp32[i * ldc + j] = alpha * sum;
} else {
Cfp32[i * ldc + j] = alpha * sum + beta * Cfp32[i * ldc + j];
}
}
}
}
namespace {
// From https://stackoverflow.com/questions/31652875
uint64_t umul64wide(uint64_t a, uint64_t b) {
uint64_t a_lo = static_cast<uint32_t>(a);
uint64_t a_hi = a >> 32;
uint64_t b_lo = static_cast<uint32_t>(b);
uint64_t b_hi = b >> 32;
uint64_t p0 = a_lo * b_lo;
uint64_t p1 = a_lo * b_hi;
uint64_t p2 = a_hi * b_lo;
return p0 + (p1 << 32) + (p2 << 32);
}
} // namespace
// Expected to have overflows
NO_SANITIZE("undefined")
void cblas_gemm_i64_i64acc_ref(
matrix_op_t transa,
matrix_op_t transb,
int M,
int N,
int K,
const int64_t* A,
int lda,
const int64_t* B,
int ldb,
bool accumulate,
int64_t* C,
int ldc) {
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
int64_t acc;
if (accumulate) {
acc = C[i * ldc + j];
} else {
acc = 0;
}
for (int k = 0; k < K; ++k) {
int64_t a =
A[transa == matrix_op_t::Transpose ? i + k * lda : i * lda + k];
int64_t b =
B[transb == matrix_op_t::Transpose ? k + j * ldb : k * ldb + j];
int64_t lo = umul64wide(a, b);
acc += lo;
}
C[i * ldc + j] = acc;
} // j
} // i
}
void row_offsets_u8acc32_ref(
int M,
int K,
int ld,
const uint8_t* Aint8,
int32_t* row_offsets) {
// row offset
for (int i = 0; i < M; ++i) {
int32_t sum = 0;
for (int k = 0; k < K; ++k) {
sum += static_cast<int32_t>(Aint8[i * ld + k]);
}
row_offsets[i] = sum;
}
}
void col_offsets_with_zero_pt_s8acc32_ref(
int K,
int N,
int ld,
const int8_t* Bint8,
const int32_t* B_zero_point,
int32_t* col_offsets,
int ncols_per_quant_group) {
for (int j = 0; j < N; ++j) {
int32_t sum = 0;
for (int k = 0; k < K; ++k) {
sum += Bint8[k * ld + j];
}
col_offsets[j] = sum - B_zero_point[j / ncols_per_quant_group] * K;
}
}
void spmdm_ref(
int M,
const uint8_t* A,
int lda,
fbgemm::CompressedSparseColumn& B,
bool accumulation,
int32_t* C,
int ldc,
int groups /*=1*/) {
int N = B.NumOfCols();
assert(N % groups == 0);
if (!accumulation) {
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
C[i * ldc + j] = 0;
}
}
}
for (int g = 0; g < groups; ++g) {
for (int j = g * (N / groups); j < (g + 1) * (N / groups); ++j) {
for (int k = B.ColPtr()[j]; k < B.ColPtr()[j + 1]; ++k) {
int row = g * B.NumOfRows() + B.RowIdx()[k];
int w = B.Values()[k];
for (int i = 0; i < M; ++i) {
C[i * ldc + j] += A[i * lda + row] * w;
}
}
} // for each column of B
} // for each group
}
int32_t clip_16bit(int32_t x) {
if (x > numeric_limits<int16_t>::max()) {
return std::min<int>(numeric_limits<int16_t>::max(), x);
} else if (x < numeric_limits<int16_t>::min()) {
return std::max<int>(numeric_limits<int16_t>::min(), x);
} else {
return x;
}
}
/* Imitate the Im2Col<float, CPUContext, StorageOrder::NWC> function
* from caffe2/utils/math_cpu.cc
* NWC StorageOrder/Layout
* A: NWC: NW_0 x C_0
* Ao: NWC: NW_1 x G KW C_0/G
*/
template <>
FBGEMM_API void im2col_ref(
const conv_param_t<1>& conv_p,
const uint8_t* A,
int32_t A_zero_point,
uint8_t* Ao) {
int IC = conv_p.IC;
int G = conv_p.G;
assert(IC % G == 0);
array<int, 1> IN_DIM = conv_p.IN_DIM;
array<int, 1> OUT_DIM = conv_p.OUT_DIM;
array<int, 1> K = conv_p.K;
if (conv_p.transposed) {
for (int n = 0; n < conv_p.MB; ++n) {
for (int ow = 0; ow < OUT_DIM[0]; ++ow) {
for (int s = 0; s < K[0]; ++s) {
int w = ow + conv_p.pad[0] - s * conv_p.dilation[0];
int w_in = w / conv_p.stride[0];
if (w_in * conv_p.stride[0] == w && w_in >= 0 && w_in < IN_DIM[0]) {
for (int g = 0; g < G; ++g) {
memcpy(
Ao + (((n * OUT_DIM[0] + ow) * G + g) * K[0] + s) * (IC / G),
A + (n * IN_DIM[0] + w_in) * IC + g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memset(
Ao + (((n * OUT_DIM[0] + ow) * G + g) * K[0] + s) * (IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each ow
} // for each n
} else {
for (int n = 0; n < conv_p.MB; ++n) {
for (int w = 0; w < OUT_DIM[0]; ++w) {
for (int s = 0; s < K[0]; ++s) {
int w_in =
-conv_p.pad[0] + w * conv_p.stride[0] + s * conv_p.dilation[0];
if (w_in < 0 || w_in >= IN_DIM[0]) {
for (int g = 0; g < G; ++g) {
memset(
Ao + (((n * OUT_DIM[0] + w) * G + g) * K[0] + s) * (IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memcpy(
Ao + (((n * OUT_DIM[0] + w) * G + g) * K[0] + s) * (IC / G),
A + (n * IN_DIM[0] + w_in) * IC + g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each w
} // for each n
}
}
/* Imitate the Im2Col<float, CPUContext, StorageOrder::NHWC> function
* from caffe2/utils/math_cpu.cc
* NHWC StorageOrder/Layout
* A: NHWC: NH_0W_0 x C_0
* Ao: NHWC: NH_1W_1 x G RS C_0/G
*/
template <>
FBGEMM_API void im2col_ref(
const conv_param_t<2>& conv_p,
const uint8_t* A,
int32_t A_zero_point,
uint8_t* Ao) {
int IC = conv_p.IC;
int G = conv_p.G;
assert(IC % G == 0);
array<int, 2> IN_DIM = conv_p.IN_DIM;
array<int, 2> OUT_DIM = conv_p.OUT_DIM;
array<int, 2> K = conv_p.K;
if (conv_p.transposed) {
for (int n = 0; n < conv_p.MB; ++n) {
for (int oh = 0; oh < OUT_DIM[0]; ++oh) {
for (int ow = 0; ow < OUT_DIM[1]; ++ow) {
for (int r = 0; r < K[0]; ++r) {
for (int s = 0; s < K[1]; ++s) {
int h = oh + conv_p.pad[0] - r * conv_p.dilation[0];
int w = ow + conv_p.pad[1] - s * conv_p.dilation[1];
int h_in = h / conv_p.stride[0];
int w_in = w / conv_p.stride[1];
if (h_in * conv_p.stride[0] == h && h_in >= 0 &&
h_in < IN_DIM[0] && w_in * conv_p.stride[1] == w &&
w_in >= 0 && w_in < IN_DIM[1]) {
for (int g = 0; g < G; ++g) {
memcpy(
Ao +
(((((n * OUT_DIM[0] + oh) * OUT_DIM[1] + ow) * G +
g) *
K[0] +
r) *
K[1] +
s) *
(IC / G),
A + ((n * IN_DIM[0] + h_in) * IN_DIM[1] + w_in) * IC +
g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memset(
Ao +
(((((n * OUT_DIM[0] + oh) * OUT_DIM[1] + ow) * G +
g) *
K[0] +
r) *
K[1] +
s) *
(IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each r
} // for each ow
} // for each oh
} // for each n
} else {
for (int n = 0; n < conv_p.MB; ++n) {
for (int h = 0; h < OUT_DIM[0]; ++h) {
for (int w = 0; w < OUT_DIM[1]; ++w) {
for (int r = 0; r < K[0]; ++r) {
int h_in =
-conv_p.pad[0] + h * conv_p.stride[0] + r * conv_p.dilation[0];
for (int s = 0; s < K[1]; ++s) {
int w_in = -conv_p.pad[1] + w * conv_p.stride[1] +
s * conv_p.dilation[1];
if (h_in < 0 || h_in >= IN_DIM[0] || w_in < 0 ||
w_in >= IN_DIM[1]) {
for (int g = 0; g < G; ++g) {
memset(
Ao +
(((((n * OUT_DIM[0] + h) * OUT_DIM[1] + w) * G + g) *
K[0] +
r) *
K[1] +
s) *
(IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memcpy(
Ao +
(((((n * OUT_DIM[0] + h) * OUT_DIM[1] + w) * G + g) *
K[0] +
r) *
K[1] +
s) *
(IC / G),
A + ((n * IN_DIM[0] + h_in) * IN_DIM[1] + w_in) * IC +
g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each r
} // for each w
} // for each h
} // for each n
}
}
/* Imitate the Im2Col<float, CPUContext, StorageOrder::NHWC> function
* from caffe2/utils/math_cpu.cc
* NHWC StorageOrder/Layout
* A: NHWC: NT_0H_0W_0 x C_0
* Ao: NHWC: NT_1H_1W_1 x G QRS C_0/G
*/
template <>
FBGEMM_API void im2col_ref(
const conv_param_t<3>& conv_p,
const uint8_t* A,
int32_t A_zero_point,
uint8_t* Ao) {
int IC = conv_p.IC;
int G = conv_p.G;
assert(IC % G == 0);
array<int, 3> IN_DIM = conv_p.IN_DIM;
array<int, 3> OUT_DIM = conv_p.OUT_DIM;
array<int, 3> K = conv_p.K;
if (conv_p.transposed) {
for (int n = 0; n < conv_p.MB; ++n) {
for (int ot = 0; ot < OUT_DIM[0]; ++ot) {
for (int oh = 0; oh < OUT_DIM[1]; ++oh) {
for (int ow = 0; ow < OUT_DIM[2]; ++ow) {
for (int q = 0; q < K[0]; ++q) {
for (int r = 0; r < K[1]; ++r) {
for (int s = 0; s < K[2]; ++s) {
int t = ot + conv_p.pad[0] - q * conv_p.dilation[0];
int h = oh + conv_p.pad[1] - r * conv_p.dilation[1];
int w = ow + conv_p.pad[2] - s * conv_p.dilation[2];
int t_in = t / conv_p.stride[0];
int h_in = h / conv_p.stride[1];
int w_in = w / conv_p.stride[2];
if (t_in * conv_p.stride[0] == t && t_in >= 0 &&
t_in < IN_DIM[0] && h_in * conv_p.stride[1] == h &&
h_in >= 0 && h_in < IN_DIM[1] &&
w_in * conv_p.stride[2] == w && w_in >= 0 &&
w_in < IN_DIM[2]) {
for (int g = 0; g < G; ++g) {
memcpy(
Ao +
(((((((n * OUT_DIM[0] + ot) * OUT_DIM[1] + oh) *
OUT_DIM[2] +
ow) *
G +
g) *
K[0] +
q) *
K[1] +
r) *
K[2] +
s) *
(IC / G),
A +
(((n * IN_DIM[0] + t_in) * IN_DIM[1] + h_in) *
IN_DIM[2] +
w_in) *
IC +
g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memset(
Ao +
(((((((n * OUT_DIM[0] + ot) * OUT_DIM[1] + oh) *
OUT_DIM[2] +
ow) *
G +
g) *
K[0] +
q) *
K[1] +
r) *
K[2] +
s) *
(IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each r
} // for each q
} // for each ow
} // for each oh
} // for each ot
} // for each n
} else {
for (int n = 0; n < conv_p.MB; ++n) {
for (int t = 0; t < OUT_DIM[0]; ++t) {
for (int h = 0; h < OUT_DIM[1]; ++h) {
for (int w = 0; w < OUT_DIM[2]; ++w) {
for (int q = 0; q < K[0]; ++q) {
int t_in = -conv_p.pad[0] + t * conv_p.stride[0] +
q * conv_p.dilation[0];
for (int r = 0; r < K[1]; ++r) {
int h_in = -conv_p.pad[1] + h * conv_p.stride[1] +
r * conv_p.dilation[1];
for (int s = 0; s < K[2]; ++s) {
int w_in = -conv_p.pad[2] + w * conv_p.stride[2] +
s * conv_p.dilation[2];
if (t_in < 0 || t_in >= IN_DIM[0] || h_in < 0 ||
h_in >= IN_DIM[1] || w_in < 0 || w_in >= IN_DIM[2]) {
for (int g = 0; g < G; ++g) {
memset(
Ao +
(((((((n * OUT_DIM[0] + t) * OUT_DIM[1] + h) *
OUT_DIM[2] +
w) *
G +
g) *
K[0] +
q) *
K[1] +
r) *
K[2] +
s) *
(IC / G),
A_zero_point,
sizeof(uint8_t) * (IC / G));
}
} else {
for (int g = 0; g < G; ++g) {
memcpy(
Ao +
(((((((n * OUT_DIM[0] + t) * OUT_DIM[1] + h) *
OUT_DIM[2] +
w) *
G +
g) *
K[0] +
q) *
K[1] +
r) *
K[2] +
s) *
(IC / G),
A +
(((n * IN_DIM[0] + t_in) * IN_DIM[1] + h_in) *
IN_DIM[2] +
w_in) *
IC +
g * (IC / G),
sizeof(uint8_t) * (IC / G));
}
}
} // for each s
} // for each r
} // for each q
} // for each w
} // for each h
} // for each t
} // for each n
}
}
// 1D Conv
template <>
FBGEMM_API void conv_ref(
const conv_param_t<1>& conv_p,
const uint8_t* A,
int32_t A_zero_point,
const int8_t* B,
int32_t* C) {
// A is assumed to be (N Lin Cin)
// B is assumed to be (G K Cin/G Cout/G)
// C is assumed to be (N Lout Cout)
int IC = conv_p.IC;
int OC = conv_p.OC;
int G = conv_p.G;
assert(IC % G == 0);
assert(OC % G == 0);
array<int, 1> IN_DIM = conv_p.IN_DIM;
array<int, 1> OUT_DIM = conv_p.OUT_DIM;
array<int, 1> K = conv_p.K;
if (conv_p.transposed) {
// for ref implementation, there is no padding on the input buffer,
// padding specifies how much we remove from the output buffers
for (int n = 0; n < conv_p.MB; ++n) {
for (int ow = 0; ow < OUT_DIM[0]; ++ow) {
// stride on output is fractional stride on input
// conv index is
// int w_in = -conv_p.pad[0] + w* conv_p.stride[0] + r*
// conv_p.dilation[0];
// so we reverse it
for (int g = 0; g < G; ++g) {
for (int oc = 0; oc < OC / G; ++oc) {
int sum = 0;
for (int r = 0; r < K[0]; ++r) {
int w = ow + conv_p.pad[0] - r * conv_p.dilation[0];
int w_in = w / conv_p.stride[0];
for (int ic = 0; ic < IC / G; ++ic) {
int a = (w_in * conv_p.stride[0] == w && w_in >= 0 &&
w_in < IN_DIM[0])
? A[(n * IN_DIM[0] + w_in) * IC + g * (IC / G) + ic]
: A_zero_point;
int b =
B[((g * K[0] + r) * IC / G + ic) * (OC / G) +
oc]; // G K IC/G OC/G after transpose
sum += a * b;
} // for each ic
} // for each r
C[(n * OUT_DIM[0] + ow) * OC + g * (OC / G) + oc] = sum;
} // for each oc
} // for each g
} // for each w
} // for each n
} else {
for (int n = 0; n < conv_p.MB; ++n) {
for (int w = 0; w < OUT_DIM[0]; ++w) {
for (int g = 0; g < G; ++g) {
for (int m = 0; m < OC / G; ++m) {
int sum = 0;
for (int r = 0; r < K[0]; ++r) {
int w_in = -conv_p.pad[0] + w * conv_p.stride[0] +
r * conv_p.dilation[0];
for (int c = 0; c < IC / G; ++c) {
int a = w_in < 0 || w_in >= IN_DIM[0]
? A_zero_point
: A[(n * IN_DIM[0] + w_in) * IC + g * (IC / G) + c];
int b =
B[((g * K[0] + r) * (IC / G) + c) * (OC / G) +
m]; // G K IC/G OC/G after transpose
sum += a * b;
} // for each c
} // for each r
C[(n * OUT_DIM[0] + w) * OC + g * (OC / G) + m] = sum;
} // for each w
} // for each m
} // for each group
} // for each n
}
}
// 2D Conv
template <>
FBGEMM_API void conv_ref(
const conv_param_t<2>& conv_p,
const uint8_t* A,
int32_t A_zero_point,
const int8_t* B,
int32_t* C) {
// filters are assumed to be in G RS C/G x K format
int IC = conv_p.IC;
int OC = conv_p.OC;
int G = conv_p.G;
assert(IC % G == 0);
assert(OC % G == 0);
array<int, 2> IN_DIM = conv_p.IN_DIM;
array<int, 2> OUT_DIM = conv_p.OUT_DIM;
array<int, 2> K = conv_p.K;
if (conv_p.transposed) {
// for ref implementation, there is no padding on the input buffer,
// padding specifies how much we remove from the output buffers
for (int n = 0; n < conv_p.MB; ++n) {
for (int oh = 0; oh < OUT_DIM[0]; ++oh) {
for (int ow = 0; ow < OUT_DIM[1]; ++ow) {
// stride on output is fractional stride on input
// conv index is
// int h_in =
// -conv_p.pad[0] + h * conv_p.stride[0] + r * conv_p.dilation[0];
// int w_in =
// -conv_p.pad[1] + w * conv_p.stride[1] + s * conv_p.dilation[1];
// so we reverse it
for (int g = 0; g < G; ++g) {
for (int oc = 0; oc < OC / G; ++oc) {
int sum = 0;
for (int r = 0; r < K[0]; ++r) {
for (int s = 0; s < K[1]; ++s) {
int h = oh + conv_p.pad[0] - r * conv_p.dilation[0];
int w = ow + conv_p.pad[1] - s * conv_p.dilation[1];
int h_in = h / conv_p.stride[0];
int w_in = w / conv_p.stride[1];
for (int ic = 0; ic < IC / G; ++ic) {
int a = (h_in * conv_p.stride[0] == h && h_in >= 0 &&
h_in < IN_DIM[0] && w_in * conv_p.stride[1] == w &&
w_in >= 0 && w_in < IN_DIM[1])
? A[((n * IN_DIM[0] + h_in) * IN_DIM[1] + w_in) * IC +
g * (IC / G) + ic]
: A_zero_point;
int b =
B[((((g * K[0] + r) * K[1] + s) * (IC / G) + ic) * OC /
G) +
oc]; // G R S IC OC after transpose
sum += a * b;
} // for each ic
} // for each s
} // for each r
C[((n * OUT_DIM[0] + oh) * OUT_DIM[1] + ow) * OC + g * (OC / G) +
oc] = sum;
} // for each oc
} // for each g
} // for each w
} // for each h
} // for each n
} else {
for (int n = 0; n < conv_p.MB; ++n) {
for (int h = 0; h < OUT_DIM[0]; ++h) {
for (int w = 0; w < OUT_DIM[1]; ++w) {
for (int g = 0; g < G; ++g) {
for (int m = 0; m < OC / G; ++m) {
int sum = 0;
for (int r = 0; r < K[0]; ++r) {
int h_in = -conv_p.pad[0] + h * conv_p.stride[0] +
r * conv_p.dilation[0];
for (int s = 0; s < K[1]; ++s) {
int w_in = -conv_p.pad[1] + w * conv_p.stride[1] +
s * conv_p.dilation[1];
for (int c = 0; c < IC / G; ++c) {
int a = h_in < 0 || h_in >= IN_DIM[0] || w_in < 0 ||