forked from viscid-hub/Viscid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
amr_field.py
502 lines (441 loc) · 19.2 KB
/
amr_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""For fields that consist of a list of fields + an AMRSkeleton
Note:
An AMRField is NOT a subclass of Field, but it is a giant wrapper
around a lot of Field functionality.
"""
from __future__ import print_function
import numpy as np
import viscid
# from viscid.compat import string_types
from viscid.field import Field
__all__ = ["is_list_of_fields"]
def is_list_of_fields(lst):
"""is a sequence a sequence of Field objects?"""
for item in lst:
if not isinstance(item, Field):
return False
return True
class _FieldListCallableAttrWrapper(object):
objs = None
attrname = None
post_func = None
def __init__(self, objs, attrname, post_func=None):
# print(">>> runtime wrapping:", attrname)
for o in objs:
if not hasattr(o, attrname):
raise AttributeError("{0} has no attribute {1}"
"".format(o, attrname))
self.objs = objs
self.attrname = attrname
self.post_func = post_func
def __call__(self, *args, **kwargs):
lst = [getattr(o, self.attrname)(*args, **kwargs) for o in self.objs]
if self.post_func:
return self.post_func(lst)
else:
return lst
class AMRField(object):
"""Field-like
Contains an AMRSkeleton and a list of Fields. This mimiks a Field,
but it is NOT a subclass of Field. Many methods of Field are
wrapped and return a new AMRField.
If an attribute of Field is not explicitly wrapped, this class will
try to runtime-wrap that method and return a new AMRField or a list
containing the result. This will not work for special methods since
python will not send those through __getattr__ or __getattribute__.
"""
_TYPE = "amr"
skeleton = None
patches = None
nr_patches = None
def __init__(self, fields, skeleton):
if not is_list_of_fields(fields):
raise TypeError("AMRField can only contain Fields:", fields)
self.skeleton = skeleton
self.patches = fields
self.nr_patches = len(fields)
@property
def xl(self):
if self.skeleton:
return np.min(self.skeleton.xl, axis=0)
else:
return np.min(np.vstack([p.xl for p in self.patches]), axis=0)
@property
def xh(self):
if self.skeleton:
return np.max(self.skeleton.xh, axis=0)
else:
return np.max(np.vstack([p.xh for p in self.patches]), axis=0)
def get_slice_extent(self, selection):
extent = self.patches[0]._src_crds.get_slice_extent(selection)
for i in range(3):
if np.isnan(extent[0, i]):
extent[0, i] = self.xl[i]
if np.isnan(extent[1, i]):
extent[1, i] = self.xh[i]
return extent
###########
## slicing
def _prepare_amr_slice(self, selection):
""" return list of patches that contain selection """
# FIXME: it's not good to reach in to src_field[0]'s private methods
# like this, but it's also not good to implement these things twice
# print("??", len(self.patches))
if len(self.patches) == 0:
raise ValueError("AMR field must contain patches to be slicable")
sel_list, _ = self.patches[0]._prepare_slice(selection)
try:
extent = self.patches[0]._src_crds.get_slice_extent(selection)
except RuntimeError:
raise RuntimeError("Slicing by global index is poorly defined "
"for AMR fields; selection = '{0}'"
"".format(selection))
inds = []
# these are patches that look like they contain selection
# but might not due to finite precision errors when
# calculating xh
maybe = []
# detect dimensions that only have one cell (or node) and allow any
# slice in that direction, this helps cases where a field mab be
# defined or y = [-0.01], but the user tries to slice by 'y=0j'
all_xl_nc = np.array([patch.crds.xl_nc for patch in self.patches])
all_xh_nc = np.array([patch.crds.xh_nc for patch in self.patches])
dim_is_2d = np.all(all_xl_nc == all_xh_nc, axis=0)
for idim, is_2d in enumerate(dim_is_2d):
if is_2d:
all_xl_nc[:, idim] = -np.inf
all_xh_nc[:, idim] = np.inf
for i, fld in enumerate(self.patches):
# - if xl - atol > the extent of the slice in any direction, then
# there's no overlap
# - if xh <= the lower corner of the slice in any direction, then
# there's no overlap
# the atol and equals are done to match cases where extent overlaps
# the lower corner, but not the upper corner
# logic goes this way cause extent has NaNs in
# dimensions that aren't specified in selection... super-kludge
# also, temporarily disable warnings on NaNs in numpy
xl_nc = all_xl_nc[i]
xh_nc = all_xh_nc[i]
invalid_err_level = np.geterr()['invalid']
np.seterr(invalid='ignore')
atol = 100 * np.finfo(xl_nc.dtype).eps
if (not np.any(np.logical_or(xl_nc - atol > extent[1],
xh_nc <= extent[0]))):
if np.any(np.isclose(fld.crds.xh_nc, extent[0], atol=atol)):
maybe.append(i)
else:
inds.append(i)
np.seterr(invalid=invalid_err_level)
# if we found some maybes, but no real hits, then use the maybes
if maybe and not inds:
inds = maybe
if len(inds) == 0:
viscid.logger.error("selection {0} not in any patch @ time {1}"
"".format(selection, self.patches[0].time))
if self.skeleton:
s = " xl= {0}".format(self.skeleton.global_xl)
viscid.logger.error(s)
s = " xh= {0}".format(self.skeleton.global_xh)
viscid.logger.error(s)
inds = None
flds = None
elif len(inds) == 1:
inds = inds[0]
flds = self.patches[inds]
else:
flds = [self.patches[i] for i in inds]
return flds, inds
def _finalize_amr_slice(self, fld_lst): # pylint: disable=no-self-use
skeleton = None # FIXME
for fld in fld_lst:
if isinstance(fld, (int, float, np.number)):
m = ("Trying to make an AMRField where 1+ patches "
"is just a number... You probably slice_reduced "
"a field down to a scalar value")
viscid.logger.error(m)
# prune out fields that got sliced to smithereens
for i in reversed(range(len(fld_lst))):
if fld_lst[i].size == 0:
viscid.logger.debug("finalize amr slice, remove size 0 patch")
fld_lst.pop(i)
# look for uneven dimensions in the results and fill them back out
axes = [patch.crds.axes for patch in fld_lst]
ndims = np.array([len(ax) for ax in axes])
ref_axes = axes[np.argmax(ndims)]
ref_ndims = np.max(ndims)
for i, fld in enumerate(fld_lst):
if ndims[i] < ref_ndims:
putback = []
for _ax in ref_axes:
if _ax in axes[i]:
putback.append('{0}=:'.format(_ax))
else:
putback.append('{0}=newaxis'.format(_ax))
putback_slice = ','.join(putback)
viscid.logger.debug("putback: {0}".format(putback_slice))
fld_lst[i] = fld[putback_slice]
return AMRField(fld_lst, skeleton)
def patch_indices(self, selection):
"""get the indices of the patches that overlap selection
Args:
selection (slice, str): anything that can slice a field
Returns:
list of indices
"""
_, inds = self._prepare_amr_slice(selection)
return inds
def slice(self, selection):
fld_lst, _ = self._prepare_amr_slice(selection)
if not isinstance(fld_lst, list):
return fld_lst.slice(selection)
fld_lst = [fld.slice(selection) for fld in fld_lst]
return self._finalize_amr_slice(fld_lst)
def slice_reduce(self, selection):
fld_lst, _ = self._prepare_amr_slice(selection)
if not isinstance(fld_lst, list):
return fld_lst.slice_reduce(selection)
fld_lst = [fld.slice_reduce(selection) for fld in fld_lst]
return self._finalize_amr_slice(fld_lst)
def slice_and_keep(self, selection):
fld_lst, _ = self._prepare_amr_slice(selection)
if not isinstance(fld_lst, list):
return fld_lst.slice_and_keep(selection)
fld_lst = [fld.slice_and_keep(selection) for fld in fld_lst]
return self._finalize_amr_slice(fld_lst)
def interpolated_slice(self, selection):
fld_lst, _ = self._prepare_amr_slice(selection)
if not isinstance(fld_lst, list):
raise RuntimeError("can't interpolate to that slice?")
ret_lst = [fld.interpolated_slice(selection) for fld in fld_lst]
return self._finalize_amr_slice(ret_lst)
###################
## special methods
def __getitem__(self, item):
return self.slice(item)
def __setitem__(self, key, value):
raise NotImplementedError()
def __delitem__(self, item):
raise NotImplementedError()
def __enter__(self):
return self
def __exit__(self, exc_type, value, traceback):
"""clear all caches"""
for blk in self.patches:
blk.clear_cache()
return None
def wrap_field_method(self, attrname, *args, **kwargs):
"""Wrap methods whose args are Fields and return a Field"""
# make sure all args have same number of patches as self
is_field = [None] * len(args)
for i, arg in enumerate(args):
try:
if arg.nr_patches != self.nr_patches and arg.nr_patches != 1:
raise ValueError("AMR fields in math operations must "
"have the same number of patches")
is_field[i] = True
except AttributeError:
is_field[i] = False
lst = [None] * self.nr_patches
other = [None] * len(args)
# FIXME: There must be a better way
for i, patch in enumerate(self.patches):
for j, arg in enumerate(args):
if is_field[j]:
try:
other[j] = arg.patches[i]
except IndexError:
other[j] = arg.patches[0]
else:
other[j] = arg
lst[i] = getattr(patch, attrname)(*other, **kwargs)
if np.asarray(lst[0]).size == 1:
# operation reduced to scalar
arr = np.array(lst)
return getattr(arr, attrname)(**kwargs)
else:
return AMRField(lst, self.skeleton)
# TODO: as of numpy 1.10, this will be called on ufuncs... this
# will help some of the FIXMEs in __array__
# def __numpy_ufunc__(self, ufunc, method, i, inputs, **kwargs):
# pass
def __array__(self, *args, **kwargs):
# FIXME: This is heinously inefficient for large arrays because it
# makes an copy of all the arrays... but I don't see
# a way around this because ufuncs expect a single array
# FIXME: adding a dimension to the arrays will break cases like
# np.sum(fld, axis=-1), cause that -1 will now be the patch
# dimension
patches = [patch.__array__(*args, **kwargs) for patch in self.patches]
for i, patch in enumerate(patches):
patches[i] = np.expand_dims(patch, 0)
# the vstack will copy all the arrays, this is what __numpy_ufunc__
# will be able to avoid
arr = np.vstack(patches)
# roll the patch dimension to the last dimension... this is for ufuncs
# that take an axis argument... this way axis will only be confused
# if it's negative, this is the main reason to use __numpy_ufunc__
# in the future
arr = np.rollaxis(arr, 0, len(arr.shape))
return arr
def __array_wrap__(self, arr, context=None): # pylint: disable=unused-argument
# print(">> __array_wrap__", arr.shape, context)
flds = []
for i in range(arr.shape[-1]):
patch_arr = arr[..., i]
fld = self.patches[i].__array_wrap__(patch_arr, context=context)
flds.append(fld)
return AMRField(flds, self.skeleton)
def __add__(self, other):
return self.wrap_field_method("__add__", other)
def __sub__(self, other):
return self.wrap_field_method("__sub__", other)
def __mul__(self, other):
return self.wrap_field_method("__mul__", other)
def __div__(self, other):
return self.wrap_field_method("__div__", other)
def __truediv__(self, other):
return self.wrap_field_method("__truediv__", other)
def __floordiv__(self, other):
return self.wrap_field_method("__floordiv__", other)
def __mod__(self, other):
return self.wrap_field_method("__mod__", other)
def __divmod__(self, other):
return self.wrap_field_method("__divmod__", other)
def __pow__(self, other):
return self.wrap_field_method("__pow__", other)
def __lshift__(self, other):
return self.wrap_field_method("__lshift__", other)
def __rshift__(self, other):
return self.wrap_field_method("__rshift__", other)
def __and__(self, other):
return self.wrap_field_method("__and__", other)
def __xor__(self, other):
return self.wrap_field_method("__xor__", other)
def __or__(self, other):
return self.wrap_field_method("__or__", other)
def __radd__(self, other):
return self.wrap_field_method("__radd__", other)
def __rsub__(self, other):
return self.wrap_field_method("__rsub__", other)
def __rmul__(self, other):
return self.wrap_field_method("__rmul__", other)
def __rdiv__(self, other):
return self.wrap_field_method("__rdiv__", other)
def __rtruediv__(self, other):
return self.wrap_field_method("__rtruediv__", other)
def __rfloordiv__(self, other):
return self.wrap_field_method("__rfloordiv__", other)
def __rmod__(self, other):
return self.wrap_field_method("__rmod__", other)
def __rdivmod__(self, other):
return self.wrap_field_method("__rdivmod__", other)
def __rpow__(self, other):
return self.wrap_field_method("__rpow__", other)
def __iadd__(self, other):
return self.wrap_field_method("__iadd__", other)
def __isub__(self, other):
return self.wrap_field_method("__isub__", other)
def __imul__(self, other):
return self.wrap_field_method("__imul__", other)
def __idiv__(self, other):
return self.wrap_field_method("__idiv__", other)
def __itruediv__(self, other):
return self.wrap_field_method("__itruediv__", other)
def __ifloordiv__(self, other):
return self.wrap_field_method("__ifloordiv__", other)
def __imod__(self, other):
return self.wrap_field_method("__imod__", other)
def __ipow__(self, other):
return self.wrap_field_method("__ipow__", other)
def __neg__(self):
return self.wrap_field_method("__neg__")
def __pos__(self):
return self.wrap_field_method("__pos__")
def __abs__(self):
return self.wrap_field_method("__abs__")
def __invert__(self):
return self.wrap_field_method("__invert__")
def __lt__(self, other):
return self.wrap_field_method("__lt__", other)
def __le__(self, other):
return self.wrap_field_method("__le__", other)
def __eq__(self, other):
return self.wrap_field_method("__eq__", other)
def __ne__(self, other):
return self.wrap_field_method("__ne__", other)
def __gt__(self, other):
return self.wrap_field_method("__gt__", other)
def __ge__(self, other):
return self.wrap_field_method("__ge__", other)
def any(self, **kwargs):
return self.wrap_field_method("any", **kwargs)
def all(self, **kwargs):
return self.wrap_field_method("all", **kwargs)
def argmax(self, **kwargs):
return self.wrap_field_method("argmax", **kwargs)
def argmin(self, **kwargs):
return self.wrap_field_method("argmin", **kwargs)
def argpartition(self, **kwargs):
return self.wrap_field_method("argpartition", **kwargs)
def argsort(self, **kwargs):
return self.wrap_field_method("argsort", **kwargs)
def clip(self, **kwargs):
return self.wrap_field_method("clip", **kwargs)
def conj(self, **kwargs):
return self.wrap_field_method("conj", **kwargs)
def conjugate(self, **kwargs):
return self.wrap_field_method("conjugate", **kwargs)
def cumprod(self, **kwargs):
return self.wrap_field_method("cumprod", **kwargs)
def cumsum(self, **kwargs):
return self.wrap_field_method("cumsum", **kwargs)
def max(self, **kwargs):
return self.wrap_field_method("max", **kwargs)
def mean(self, **kwargs):
return self.wrap_field_method("mean", **kwargs)
def min(self, **kwargs):
return self.wrap_field_method("min", **kwargs)
def nonzero(self, **kwargs):
return self.wrap_field_method("nonzero", **kwargs)
def partition(self, **kwargs):
return self.wrap_field_method("partition", **kwargs)
def prod(self, **kwargs):
return self.wrap_field_method("prod", **kwargs)
def ptp(self, **kwargs):
return self.wrap_field_method("ptp", **kwargs)
def round(self, **kwargs):
return self.wrap_field_method("round", **kwargs)
def std(self, **kwargs):
return self.wrap_field_method("std", **kwargs)
def sum(self, **kwargs):
return self.wrap_field_method("sum", **kwargs)
def __getattr__(self, name):
# define a callback to finalize
# print("!! getting attr::", name)
if callable(getattr(self.patches[0], name)):
def _wrap(lst):
try:
return AMRField(lst, self.skeleton)
except TypeError:
return lst
return _FieldListCallableAttrWrapper(self.patches, name, _wrap)
else:
# return [getattr(fld, name) for fld in self.patches]
ret0 = getattr(self.patches[0], name)
# Check that all patches have the same value. Maybe this should
# have a debugging flag attached to it since it will take time.
try:
all_same = all(getattr(blk, name) == ret0
for blk in self.patches[1:])
except ValueError:
all_same = all(np.all(getattr(blk, name) == ret0)
for blk in self.patches[1:])
if not all_same:
raise ValueError("different patches of the AMRField have "
"different values for attribute: {0}"
"".format(name))
return ret0
##
## EOF
##