forked from ElementsProject/lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
key_derive.c
265 lines (240 loc) · 9.18 KB
/
key_derive.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#include <bitcoin/privkey.h>
#include <bitcoin/pubkey.h>
#include <ccan/crypto/sha256/sha256.h>
#include <common/key_derive.h>
#include <common/utils.h>
#include <wally_bip32.h>
/* BOLT #3:
*
* ### `localpubkey`, `remotepubkey`, `local_htlcpubkey`, `remote_htlcpubkey`, `local_delayedpubkey`, and `remote_delayedpubkey` Derivation
*
* These pubkeys are simply generated by addition from their base points:
*
* pubkey = basepoint + SHA256(per_commitment_point || basepoint) * G
*
* The `localpubkey` uses the local node's `payment_basepoint`;
* the `remotepubkey` uses the remote node's `payment_basepoint`;
* the `local_htlcpubkey` uses the local node's `htlc_basepoint`;
* the `remote_htlcpubkey` uses the remote node's `htlc_basepoint`;
* the `local_delayedpubkey` uses the local node's `delayed_payment_basepoint`;
* and the `remote_delayedpubkey` uses the remote node's `delayed_payment_basepoint`.
*/
bool derive_simple_key(const struct pubkey *basepoint,
const struct pubkey *per_commitment_point,
struct pubkey *key)
{
struct sha256 sha;
unsigned char der_keys[PUBKEY_DER_LEN * 2];
pubkey_to_der(der_keys, per_commitment_point);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, basepoint);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(per_commitment_point || basepoint)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n",
tal_hexstr(tmpctx, &sha, sizeof(sha)));
#endif
*key = *basepoint;
if (secp256k1_ec_pubkey_tweak_add(secp256k1_ctx,
&key->pubkey, sha.u.u8) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# + basepoint (0x%s)\n",
type_to_string(tmpctx, struct pubkey, basepoint));
printf("# = 0x%s\n",
type_to_string(tmpctx, struct pubkey, key));
#endif
return true;
}
/* BOLT #3:
*
* The corresponding private keys can be similarly derived, if the basepoint
* secrets are known (i.e. the private keys corresponding to `localpubkey`,
* `local_htlcpubkey`, and `local_delayedpubkey` only):
*
* privkey = basepoint_secret + SHA256(per_commitment_point || basepoint)
*/
bool derive_simple_privkey(const struct secret *base_secret,
const struct pubkey *basepoint,
const struct pubkey *per_commitment_point,
struct privkey *key)
{
struct sha256 sha;
unsigned char der_keys[PUBKEY_DER_LEN * 2];
pubkey_to_der(der_keys, per_commitment_point);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, basepoint);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(per_commitment_point || basepoint)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n", tal_hexstr(tmpctx, &sha, sizeof(sha)));
#endif
key->secret = *base_secret;
if (secp256k1_ec_privkey_tweak_add(secp256k1_ctx, key->secret.data,
sha.u.u8) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# + basepoint_secret (0x%s)\n",
tal_hexstr(tmpctx, base_secret, sizeof(*base_secret)));
printf("# = 0x%s\n",
tal_hexstr(tmpctx, key, sizeof(*key)));
#endif
return true;
}
/* BOLT #3:
*
* The `revocationpubkey` is a blinded key: when the local node wishes to
* create a new commitment for the remote node, it uses its own
* `revocation_basepoint` and the remote node's `per_commitment_point` to
* derive a new `revocationpubkey` for the commitment. After the remote node
* reveals the `per_commitment_secret` used (thereby revoking that
* commitment), the local node can then derive the `revocationprivkey`, as it
* now knows the two secrets necessary to derive the key
* (`revocation_basepoint_secret` and `per_commitment_secret`).
*
* The `per_commitment_point` is generated using elliptic-curve multiplication:
*
* per_commitment_point = per_commitment_secret * G
*
* And this is used to derive the revocation pubkey from the remote node's
* `revocation_basepoint`:
*
* revocationpubkey = revocation_basepoint * SHA256(revocation_basepoint || per_commitment_point) + per_commitment_point * SHA256(per_commitment_point || revocation_basepoint)
*/
bool derive_revocation_key(const struct pubkey *basepoint,
const struct pubkey *per_commitment_point,
struct pubkey *key)
{
struct sha256 sha;
unsigned char der_keys[PUBKEY_DER_LEN * 2];
secp256k1_pubkey add[2];
const secp256k1_pubkey *args[2];
pubkey_to_der(der_keys, basepoint);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, per_commitment_point);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(revocation_basepoint || per_commitment_point)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n", tal_hexstr(tmpctx, sha.u.u8, sizeof(sha.u.u8))),
#endif
add[0] = basepoint->pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx, &add[0], sha.u.u8) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# x revocation_basepoint = 0x%s\n",
type_to_string(tmpctx, secp256k1_pubkey, &add[0]));
#endif
pubkey_to_der(der_keys, per_commitment_point);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, basepoint);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(per_commitment_point || revocation_basepoint)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n", tal_hexstr(tmpctx, sha.u.u8, sizeof(sha.u.u8))),
#endif
add[1] = per_commitment_point->pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx, &add[1], sha.u.u8) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# x per_commitment_point = 0x%s\n",
type_to_string(tmpctx, secp256k1_pubkey, &add[1]));
#endif
args[0] = &add[0];
args[1] = &add[1];
if (secp256k1_ec_pubkey_combine(secp256k1_ctx, &key->pubkey, args, 2)
!= 1)
return false;
#ifdef SUPERVERBOSE
printf("# 0x%s + 0x%s => 0x%s\n",
type_to_string(tmpctx, secp256k1_pubkey, args[0]),
type_to_string(tmpctx, secp256k1_pubkey, args[1]),
type_to_string(tmpctx, struct pubkey, key));
#endif
return true;
}
/* BOLT #3:
*
* The corresponding private key can be derived once the `per_commitment_secret`
* is known:
*
* revocationprivkey = revocation_basepoint_secret * SHA256(revocation_basepoint || per_commitment_point) + per_commitment_secret * SHA256(per_commitment_point || revocation_basepoint)
*/
bool derive_revocation_privkey(const struct secret *base_secret,
const struct secret *per_commitment_secret,
const struct pubkey *basepoint,
const struct pubkey *per_commitment_point,
struct privkey *key)
{
struct sha256 sha;
unsigned char der_keys[PUBKEY_DER_LEN * 2];
struct secret part2;
pubkey_to_der(der_keys, basepoint);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, per_commitment_point);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(revocation_basepoint || per_commitment_point)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n", tal_hexstr(tmpctx, sha.u.u8, sizeof(sha.u.u8))),
#endif
key->secret = *base_secret;
if (secp256k1_ec_privkey_tweak_mul(secp256k1_ctx, key->secret.data,
sha.u.u8)
!= 1)
return false;
#ifdef SUPERVERBOSE
printf("# * revocation_basepoint_secret (0x%s)",
tal_hexstr(tmpctx, base_secret, sizeof(*base_secret))),
printf("# = 0x%s\n", tal_hexstr(tmpctx, key, sizeof(*key))),
#endif
pubkey_to_der(der_keys, per_commitment_point);
pubkey_to_der(der_keys + PUBKEY_DER_LEN, basepoint);
sha256(&sha, der_keys, sizeof(der_keys));
#ifdef SUPERVERBOSE
printf("# SHA256(per_commitment_point || revocation_basepoint)\n");
printf("# => SHA256(0x%s || 0x%s)\n",
tal_hexstr(tmpctx, der_keys, PUBKEY_DER_LEN),
tal_hexstr(tmpctx, der_keys + PUBKEY_DER_LEN, PUBKEY_DER_LEN));
printf("# = 0x%s\n", tal_hexstr(tmpctx, sha.u.u8, sizeof(sha.u.u8))),
#endif
part2 = *per_commitment_secret;
if (secp256k1_ec_privkey_tweak_mul(secp256k1_ctx, part2.data,
sha.u.u8) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# * per_commitment_secret (0x%s)",
tal_hexstr(tmpctx, per_commitment_secret,
sizeof(*per_commitment_secret))),
printf("# = 0x%s\n", tal_hexstr(tmpctx, &part2, sizeof(part2)));
#endif
if (secp256k1_ec_privkey_tweak_add(secp256k1_ctx, key->secret.data,
part2.data) != 1)
return false;
#ifdef SUPERVERBOSE
printf("# => 0x%s\n", tal_hexstr(tmpctx, key, sizeof(*key)));
#endif
return true;
}
bool bip32_pubkey(const struct ext_key *bip32_base,
struct pubkey *pubkey, u32 index)
{
const uint32_t flags = BIP32_FLAG_KEY_PUBLIC | BIP32_FLAG_SKIP_HASH;
struct ext_key ext;
if (index >= BIP32_INITIAL_HARDENED_CHILD)
return false;
if (bip32_key_from_parent(bip32_base, index, flags, &ext) != WALLY_OK)
return false;
if (!secp256k1_ec_pubkey_parse(secp256k1_ctx, &pubkey->pubkey,
ext.pub_key, sizeof(ext.pub_key)))
return false;
return true;
}