This repository has been archived by the owner on Jul 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathcomposite.c
1926 lines (1680 loc) · 55.7 KB
/
composite.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* composite.c - Handles UCC.EAN Composite Symbols */
/*
libzint - the open source barcode library
Copyright (C) 2008 Robin Stuart <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/* The functions "getBit", "init928" and "encode928" are copyright BSI and are
released with permission under the following terms:
"Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the international standardisation bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any
means - electronic, photocopying, recording or otherwise - without prior written
permission from BSI.
"This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If these
details are to be used for any other purpose than implementation then the prior
written permission of BSI must be obtained."
The date of publication for these functions is 31 May 2006
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "common.h"
#include "large.h"
#include "composite.h"
#include "pdf417.h"
#include "gs1.h"
extern int general_rules(char field[], char type[]);
extern int eanx(struct zint_symbol *symbol, uint8_t source[], int length);
extern int ean_128(struct zint_symbol *symbol, uint8_t source[], int length);
extern int rss14(struct zint_symbol *symbol, uint8_t source[], int length);
extern int rsslimited(struct zint_symbol *symbol, uint8_t source[], int length);
extern int rssexpanded(struct zint_symbol *symbol, uint8_t source[], int length);
static uint16_t pwr928[69][7];
int _min(int first, int second) {
if(first <= second)
return first;
else
return second;
}
/* gets bit in bitString at bitPos */
int getBit(uint16_t *bitStr, int bitPos) {
return !!(bitStr[bitPos >> 4] & (0x8000 >> (bitPos & 15)));
}
/* initialize pwr928 encoding table */
void init928(void) {
int i, j, v;
int cw[7];
cw[6] = 1L;
for (i = 5; i >= 0; i--)
cw[i] = 0;
for (i = 0; i < 7; i++)
pwr928[0][i] = cw[i];
for (j = 1; j < 69; j++) {
for (v = 0, i = 6; i >= 1; i--) {
v = (2 * cw[i]) + (v / 928);
pwr928[j][i] = cw[i] = v % 928;
}
pwr928[j][0] = cw[0] = (2 * cw[0]) + (v / 928);
}
return;
}
/* converts bit string to base 928 values, codeWords[0] is highest order */
int encode928(uint16_t bitString[], uint16_t codeWords[], int bitLng) {
int i, j, b, bitCnt, cwNdx, cwCnt, cwLng;
for (cwNdx = cwLng = b = 0; b < bitLng; b += 69, cwNdx += 7) {
bitCnt = _min(bitLng-b, 69);
cwLng += cwCnt = bitCnt/10 + 1;
for (i = 0; i < cwCnt; i++)
codeWords[cwNdx+i] = 0; /* init 0 */
for (i = 0; i < bitCnt; i++) {
if (getBit(bitString, b+bitCnt-i-1)) {
for (j = 0; j < cwCnt; j++)
codeWords[cwNdx+j] += pwr928[i][j+7-cwCnt];
}
}
for (i = cwCnt-1; i > 0; i--) {
/* add "carries" */
codeWords[cwNdx+i-1] += codeWords[cwNdx+i]/928L;
codeWords[cwNdx+i] %= 928L;
}
}
return (cwLng);
}
int cc_a(struct zint_symbol *symbol, char source[], int cc_width)
{ /* CC-A 2D component */
int i, strpos, segment, bitlen, cwCnt, variant, rows;
int k, offset, j, total, rsCodeWords[8];
int LeftRAPStart, RightRAPStart, CentreRAPStart, StartCluster;
int LeftRAP, RightRAP, CentreRAP, Cluster, dummy[5];
int writer, flip, loop;
uint16_t codeWords[28];
uint16_t bitStr[13];
char codebarre[100], pattern[580];
char local_source[210]; /* A copy of source but with padding zeroes to make 208 bits */
variant=0;
for(i = 0; i < 13; i++) { bitStr[i] = 0; }
for(i = 0; i < 28; i++) { codeWords[i] = 0; }
bitlen = strlen(source);
for(i = 0; i < 208; i++) { local_source[i] = '0'; }
for(i = 0; i < bitlen; i++) { local_source[i] = source[i]; }
local_source[208] = '\0';
for(segment = 0; segment < 13; segment++) {
strpos = segment * 16;
if(local_source[strpos] == '1') { bitStr[segment] += 0x8000; }
if(local_source[strpos + 1] == '1') { bitStr[segment] += 0x4000; }
if(local_source[strpos + 2] == '1') { bitStr[segment] += 0x2000; }
if(local_source[strpos + 3] == '1') { bitStr[segment] += 0x1000; }
if(local_source[strpos + 4] == '1') { bitStr[segment] += 0x800; }
if(local_source[strpos + 5] == '1') { bitStr[segment] += 0x400; }
if(local_source[strpos + 6] == '1') { bitStr[segment] += 0x200; }
if(local_source[strpos + 7] == '1') { bitStr[segment] += 0x100; }
if(local_source[strpos + 8] == '1') { bitStr[segment] += 0x80; }
if(local_source[strpos + 9] == '1') { bitStr[segment] += 0x40; }
if(local_source[strpos + 10] == '1') { bitStr[segment] += 0x20; }
if(local_source[strpos + 11] == '1') { bitStr[segment] += 0x10; }
if(local_source[strpos + 12] == '1') { bitStr[segment] += 0x08; }
if(local_source[strpos + 13] == '1') { bitStr[segment] += 0x04; }
if(local_source[strpos + 14] == '1') { bitStr[segment] += 0x02; }
if(local_source[strpos + 15] == '1') { bitStr[segment] += 0x01; }
}
init928();
/* encode codeWords from bitStr */
cwCnt = encode928(bitStr, codeWords, bitlen);
switch(cc_width) {
case 2:
switch(cwCnt) {
case 6: variant = 0; break;
case 8: variant = 1; break;
case 9: variant = 2; break;
case 11: variant = 3; break;
case 12: variant = 4; break;
case 14: variant = 5; break;
case 17: variant = 6; break;
}
break;
case 3:
switch(cwCnt) {
case 8: variant = 7; break;
case 10: variant = 8; break;
case 12: variant = 9; break;
case 14: variant = 10; break;
case 17: variant = 11; break;
}
break;
case 4:
switch(cwCnt) {
case 8: variant = 12; break;
case 11: variant = 13; break;
case 14: variant = 14; break;
case 17: variant = 15; break;
case 20: variant = 16; break;
}
break;
}
rows = ccaVariants[variant];
k = ccaVariants[17 + variant];
offset = ccaVariants[34 + variant];
/* Reed-Solomon error correction */
for(i = 0; i < 8; i++) {
rsCodeWords[i] = 0;
}
total = 0;
for(i = 0; i < cwCnt; i++) {
total = (codeWords[i] + rsCodeWords[k - 1]) % 929;
for(j = k - 1; j >= 0; j--) {
if(j == 0) {
rsCodeWords[j] = (929 - (total * ccaCoeffs[offset + j]) % 929) % 929;
} else {
rsCodeWords[j] = (rsCodeWords[j - 1] + 929 - (total * ccaCoeffs[offset + j]) % 929) % 929;
}
}
}
for(j = 0; j < k; j++) {
if(rsCodeWords[j] != 0) { rsCodeWords[j] = 929 - rsCodeWords[j]; }
}
for(i = k - 1; i >= 0; i--) {
codeWords[cwCnt] = rsCodeWords[i];
cwCnt++;
}
/* Place data into table */
LeftRAPStart = aRAPTable[variant];
CentreRAPStart = aRAPTable[variant + 17];
RightRAPStart = aRAPTable[variant + 34];
StartCluster = aRAPTable[variant + 51] / 3;
LeftRAP = LeftRAPStart;
CentreRAP = CentreRAPStart;
RightRAP = RightRAPStart;
Cluster = StartCluster; /* Cluster can be 0, 1 or 2 for Cluster(0), Cluster(3) and Cluster(6) */
for(i = 0; i < rows; i++) {
strcpy(codebarre, "");
offset = 929 * Cluster;
for(j = 0; j < 5; j++) {
dummy[j] = 0;
}
for(j = 0; j < cc_width ; j++) {
dummy[j + 1] = codeWords[i * cc_width + j];
}
/* Copy the data into codebarre */
concat(codebarre, RAPLR[LeftRAP]);
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[1]]);
concat(codebarre, "1");
if(cc_width == 3) {
concat(codebarre, RAPC[CentreRAP]);
}
if(cc_width >= 2) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[2]]);
concat(codebarre, "1");
}
if(cc_width == 4) {
concat(codebarre, RAPC[CentreRAP]);
}
if(cc_width >= 3) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[3]]);
concat(codebarre, "1");
}
if(cc_width == 4) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[4]]);
concat(codebarre, "1");
}
concat(codebarre, RAPLR[RightRAP]);
concat(codebarre, "1"); /* stop */
/* Now codebarre is a mixture of letters and numbers */
writer = 0;
flip = 1;
strcpy(pattern, "");
for(loop = 0; loop < strlen(codebarre); loop++) {
if((codebarre[loop] >= '0') && (codebarre[loop] <= '9')) {
for(k = 0; k < ctoi(codebarre[loop]); k++) {
if(flip == 0) {
pattern[writer] = '0';
} else {
pattern[writer] = '1';
}
writer++;
}
pattern[writer] = '\0';
if(flip == 0) {
flip = 1;
} else {
flip = 0;
}
} else {
lookup(BRSET, PDFttf, codebarre[loop], pattern);
writer += 5;
}
}
symbol->width = writer;
/* so now pattern[] holds the string of '1's and '0's. - copy this to the symbol */
for(loop = 0; loop < strlen(pattern); loop++) {
if(pattern[loop] == '1') { set_module(symbol, i, loop); }
}
symbol->row_height[i] = 2;
symbol->rows++;
/* Set up RAPs and Cluster for next row */
LeftRAP++;
CentreRAP++;
RightRAP++;
Cluster++;
if(LeftRAP == 53) {
LeftRAP = 1;
}
if(CentreRAP == 53) {
CentreRAP = 1;
}
if(RightRAP == 53) {
RightRAP = 1;
}
if(Cluster == 3) {
Cluster = 0;
}
}
return 0;
}
int cc_b(struct zint_symbol *symbol, char source[], int cc_width)
{ /* CC-B 2D component */
int length, i, binloc;
uint8_t data_string[(strlen(source) / 8) + 3];
int chainemc[180], mclength;
int k, j, longueur, mccorrection[50], offset;
int total, dummy[5];
char codebarre[100], pattern[580];
int variant, LeftRAPStart, CentreRAPStart, RightRAPStart, StartCluster;
int LeftRAP, CentreRAP, RightRAP, Cluster, writer, flip, loop;
length = strlen(source) / 8;
for(i = 0; i < length; i++) {
binloc = i * 8;
data_string[i] = 0;
if(source[binloc] == '1') { data_string[i] += 0x80; }
if(source[binloc + 1] == '1') { data_string[i] += 0x40; }
if(source[binloc + 2] == '1') { data_string[i] += 0x20; }
if(source[binloc + 3] == '1') { data_string[i] += 0x10; }
if(source[binloc + 4] == '1') { data_string[i] += 0x08; }
if(source[binloc + 5] == '1') { data_string[i] += 0x04; }
if(source[binloc + 6] == '1') { data_string[i] += 0x02; }
if(source[binloc + 7] == '1') { data_string[i] += 0x01; }
}
mclength = 0;
/* "the CC-B component shall have codeword 920 in the first symbol character position" (section 9a) */
chainemc[mclength] = 920;
mclength++;
byteprocess(chainemc, &mclength, data_string, 0, length, 0);
/* Now figure out which variant of the symbol to use and load values accordingly */
variant = 0;
if(cc_width == 2) {
variant = 13;
if(mclength <= 33) { variant = 12; }
if(mclength <= 29) { variant = 11; }
if(mclength <= 24) { variant = 10; }
if(mclength <= 19) { variant = 9; }
if(mclength <= 13) { variant = 8; }
if(mclength <= 8) { variant = 7; }
}
if(cc_width == 3) {
variant = 23;
if(mclength <= 70) { variant = 22; }
if(mclength <= 58) { variant = 21; }
if(mclength <= 46) { variant = 20; }
if(mclength <= 34) { variant = 19; }
if(mclength <= 24) { variant = 18; }
if(mclength <= 18) { variant = 17; }
if(mclength <= 14) { variant = 16; }
if(mclength <= 10) { variant = 15; }
if(mclength <= 6) { variant = 14; }
}
if(cc_width == 4) {
variant = 34;
if(mclength <= 108) { variant = 33; }
if(mclength <= 90) { variant = 32; }
if(mclength <= 72) { variant = 31; }
if(mclength <= 54) { variant = 30; }
if(mclength <= 39) { variant = 29; }
if(mclength <= 30) { variant = 28; }
if(mclength <= 24) { variant = 27; }
if(mclength <= 18) { variant = 26; }
if(mclength <= 12) { variant = 25; }
if(mclength <= 8) { variant = 24; }
}
/* Now we have the variant we can load the data - from here on the same as MicroPDF417 code */
variant --;
symbol->option_2 = MicroVariants[variant]; /* columns */
symbol->rows = MicroVariants[variant + 34]; /* rows */
k = MicroVariants[variant + 68]; /* number of EC CWs */
longueur = (symbol->option_2 * symbol->rows) - k; /* number of non-EC CWs */
i = longueur - mclength; /* amount of padding required */
offset = MicroVariants[variant + 102]; /* coefficient offset */
/* We add the padding */
while (i > 0) {
chainemc[mclength] = 900;
mclength++;
i--;
}
/* Reed-Solomon error correction */
longueur = mclength;
for(loop = 0; loop < 50; loop++) {
mccorrection[loop] = 0;
}
total = 0;
for(i = 0; i < longueur; i++) {
total = (chainemc[i] + mccorrection[k - 1]) % 929;
for(j = k - 1; j >= 0; j--) {
if(j == 0) {
mccorrection[j] = (929 - (total * Microcoeffs[offset + j]) % 929) % 929;
} else {
mccorrection[j] = (mccorrection[j - 1] + 929 - (total * Microcoeffs[offset + j]) % 929) % 929;
}
}
}
for(j = 0; j < k; j++) {
if(mccorrection[j] != 0) { mccorrection[j] = 929 - mccorrection[j]; }
}
/* we add these codes to the string */
for(i = k - 1; i >= 0; i--) {
chainemc[mclength] = mccorrection[i];
mclength++;
}
/* Now get the RAP (Row Address Pattern) start values */
LeftRAPStart = RAPTable[variant];
CentreRAPStart = RAPTable[variant + 34];
RightRAPStart = RAPTable[variant + 68];
StartCluster = RAPTable[variant + 102] / 3;
/* That's all values loaded, get on with the encoding */
LeftRAP = LeftRAPStart;
CentreRAP = CentreRAPStart;
RightRAP = RightRAPStart;
Cluster = StartCluster; /* Cluster can be 0, 1 or 2 for Cluster(0), Cluster(3) and Cluster(6) */
for(i = 0; i < symbol->rows; i++) {
strcpy(codebarre, "");
offset = 929 * Cluster;
for(j = 0; j < 5; j++) {
dummy[j] = 0;
}
for(j = 0; j < symbol->option_2 ; j++) {
dummy[j + 1] = chainemc[i * symbol->option_2 + j];
}
/* Copy the data into codebarre */
concat(codebarre, RAPLR[LeftRAP]);
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[1]]);
concat(codebarre, "1");
if(cc_width == 3) {
concat(codebarre, RAPC[CentreRAP]);
}
if(cc_width >= 2) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[2]]);
concat(codebarre, "1");
}
if(cc_width == 4) {
concat(codebarre, RAPC[CentreRAP]);
}
if(cc_width >= 3) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[3]]);
concat(codebarre, "1");
}
if(cc_width == 4) {
concat(codebarre, "1");
concat(codebarre, codagemc[offset + dummy[4]]);
concat(codebarre, "1");
}
concat(codebarre, RAPLR[RightRAP]);
concat(codebarre, "1"); /* stop */
/* Now codebarre is a mixture of letters and numbers */
writer = 0;
flip = 1;
strcpy(pattern, "");
for(loop = 0; loop < strlen(codebarre); loop++) {
if((codebarre[loop] >= '0') && (codebarre[loop] <= '9')) {
for(k = 0; k < ctoi(codebarre[loop]); k++) {
if(flip == 0) {
pattern[writer] = '0';
} else {
pattern[writer] = '1';
}
writer++;
}
pattern[writer] = '\0';
if(flip == 0) {
flip = 1;
} else {
flip = 0;
}
} else {
lookup(BRSET, PDFttf, codebarre[loop], pattern);
writer += 5;
}
}
symbol->width = writer;
/* so now pattern[] holds the string of '1's and '0's. - copy this to the symbol */
for(loop = 0; loop < strlen(pattern); loop++) {
if(pattern[loop] == '1') { set_module(symbol, i, loop); }
}
symbol->row_height[i] = 2;
/* Set up RAPs and Cluster for next row */
LeftRAP++;
CentreRAP++;
RightRAP++;
Cluster++;
if(LeftRAP == 53) {
LeftRAP = 1;
}
if(CentreRAP == 53) {
CentreRAP = 1;
}
if(RightRAP == 53) {
RightRAP = 1;
}
if(Cluster == 3) {
Cluster = 0;
}
}
return 0;
}
int cc_c(struct zint_symbol *symbol, char source[], int cc_width, int ecc_level)
{ /* CC-C 2D component - byte compressed PDF417 */
int length, i, binloc;
uint8_t data_string[(strlen(source) / 8) + 4];
int chainemc[1000], mclength, k;
int offset, longueur, loop, total, j, mccorrection[520];
int c1, c2, c3, dummy[35];
char codebarre[100], pattern[580];
length = strlen(source) / 8;
for(i = 0; i < length; i++) {
binloc = i * 8;
data_string[i] = 0;
if(source[binloc] == '1') { data_string[i] += 0x80; }
if(source[binloc + 1] == '1') { data_string[i] += 0x40; }
if(source[binloc + 2] == '1') { data_string[i] += 0x20; }
if(source[binloc + 3] == '1') { data_string[i] += 0x10; }
if(source[binloc + 4] == '1') { data_string[i] += 0x08; }
if(source[binloc + 5] == '1') { data_string[i] += 0x04; }
if(source[binloc + 6] == '1') { data_string[i] += 0x02; }
if(source[binloc + 7] == '1') { data_string[i] += 0x01; }
}
mclength = 0;
chainemc[mclength] = 0; /* space for length descriptor */
mclength++;
chainemc[mclength] = 920; /* CC-C identifier */
mclength++;
byteprocess(chainemc, &mclength, data_string, 0, length, 0);
chainemc[0] = mclength;
k = 1;
for(i = 1; i <= (ecc_level + 1); i++)
{
k *= 2;
}
/* 796 - we now take care of the Reed Solomon codes */
switch(ecc_level) {
case 1: offset = 2; break;
case 2: offset = 6; break;
case 3: offset = 14; break;
case 4: offset = 30; break;
case 5: offset = 62; break;
case 6: offset = 126; break;
case 7: offset = 254; break;
case 8: offset = 510; break;
default: offset = 0; break;
}
longueur = mclength;
for(loop = 0; loop < 520; loop++) {
mccorrection[loop] = 0;
}
total = 0;
for(i = 0; i < longueur; i++) {
total = (chainemc[i] + mccorrection[k - 1]) % 929;
for(j = k - 1; j >= 0; j--) {
if(j == 0) {
mccorrection[j] = (929 - (total * coefrs[offset + j]) % 929) % 929;
} else {
mccorrection[j] = (mccorrection[j - 1] + 929 - (total * coefrs[offset + j]) % 929) % 929;
}
}
}
for(j = 0; j < k; j++) {
if(mccorrection[j] != 0) { mccorrection[j] = 929 - mccorrection[j]; }
}
/* we add these codes to the string */
for(i = k - 1; i >= 0; i--) {
chainemc[mclength] = mccorrection[i];
mclength++;
}
/* 818 - The CW string is finished */
c1 = (mclength / cc_width - 1) / 3;
c2 = ecc_level * 3 + (mclength / cc_width - 1) % 3;
c3 = cc_width - 1;
/* we now encode each row */
for(i = 0; i <= (mclength / cc_width) - 1; i++) {
for(j = 0; j < cc_width ; j++) {
dummy[j + 1] = chainemc[i * cc_width + j];
}
k = (i / 3) * 30;
switch(i % 3) {
/* follows this pattern from US Patent 5,243,655:
Row 0: L0 (row #, # of rows) R0 (row #, # of columns)
Row 1: L1 (row #, security level) R1 (row #, # of rows)
Row 2: L2 (row #, # of columns) R2 (row #, security level)
Row 3: L3 (row #, # of rows) R3 (row #, # of columns)
etc. */
case 0:
dummy[0] = k + c1;
dummy[cc_width + 1] = k + c3;
break;
case 1:
dummy[0] = k + c2;
dummy[cc_width + 1] = k + c1;
break;
case 2:
dummy[0] = k + c3;
dummy[cc_width + 1] = k + c2;
break;
}
strcpy(codebarre, "+*"); /* Start with a start char and a separator */
for(j = 0; j <= cc_width + 1; j++) {
switch(i % 3) {
case 1: offset = 929; /* cluster(3) */ break;
case 2: offset = 1858; /* cluster(6) */ break;
default: offset = 0; /* cluster(0) */ break;
}
concat(codebarre, codagemc[offset + dummy[j]]);
concat(codebarre, "*");
}
concat(codebarre, "-");
strcpy(pattern, "");
for(loop = 0; loop < strlen(codebarre); loop++) {
lookup(BRSET, PDFttf, codebarre[loop], pattern);
}
for(loop = 0; loop < strlen(pattern); loop++) {
if(pattern[loop] == '1') { set_module(symbol, i, loop); }
}
symbol->row_height[i] = 3;
}
symbol->rows = (mclength / cc_width);
symbol->width = strlen(pattern);
return 0;
}
int cc_binary_string(struct zint_symbol *symbol, const char source[], char binary_string[], int cc_mode, int *cc_width, int *ecc, int lin_width)
{ /* Handles all data encodation from section 5 of ISO/IEC 24723 */
int encoding_method, read_posn, d1, d2, value, alpha_pad;
int i, j, mask, ai_crop, fnc1_latch;
long int group_val;
int ai90_mode, latch, remainder, binary_length;
char date_str[4];
char general_field[strlen(source) + 1], general_field_type[strlen(source) + 1];
int target_bitsize;
encoding_method = 1;
read_posn = 0;
ai_crop = 0;
fnc1_latch = 0;
alpha_pad = 0;
ai90_mode = 0;
*ecc = 0;
value = 0;
target_bitsize = 0;
if((source[0] == '1') && ((source[1] == '0') || (source[1] == '1') || (source[1] == '7')) && (strlen(source) > 8)) {
/* Source starts (10), (11) or (17) */
encoding_method = 2;
}
if((source[0] == '9') && (source[1] == '0')) {
/* Source starts (90) */
encoding_method = 3;
}
if(encoding_method == 1) {
concat(binary_string, "0");
}
if(encoding_method == 2) {
/* Encoding Method field "10" - date and lot number */
concat(binary_string, "10");
if(source[1] == '0') {
/* No date data */
concat(binary_string, "11");
read_posn = 2;
} else {
/* Production Date (11) or Expiration Date (17) */
date_str[0] = source[2];
date_str[1] = source[3];
date_str[2] = '\0';
group_val = atoi(date_str) * 384;
date_str[0] = source[4];
date_str[1] = source[5];
group_val += (atoi(date_str) - 1) * 32;
date_str[0] = source[6];
date_str[1] = source[7];
group_val += atoi(date_str);
mask = 0x8000;
for(j = 0; j < 16; j++) {
if((group_val & mask) == 0x00) {
concat(binary_string, "0");
} else {
concat(binary_string, "1");
}
mask = mask >> 1;
}
if(source[1] == '1') {
/* Production Date AI 11 */
concat(binary_string, "0");
} else {
/* Expiration Date AI 17 */
concat(binary_string, "1");
}
read_posn = 8;
}
if((source[read_posn] == '1') && (source[read_posn + 1] == '0')) {
/* Followed by AI 10 - strip this from general field */
read_posn += 2;
} else {
/* An FNC1 character needs to be inserted in the general field */
fnc1_latch = 1;
}
}
if (encoding_method == 3) {
/* Encodation Method field of "11" - AI 90 */
char ninety[strlen(source) + 1];
char numeric_part[4];
int alpha, alphanum, numeric, test1, test2, test3, next_ai_posn;
int numeric_value, table3_letter, mask;
/* "This encodation method may be used if an element string with an AI
90 occurs at the start of the data message, and if the data field
following the two-digit AI 90 starts with an alphanumeric string which
complies with a specific format." (para 5.2.2) */
i = 0;
do {
ninety[i] = source[i + 2];
i++;
} while ((strlen(source) > i + 2) && ('[' != source[i + 2]));
ninety[i] = '\0';
/* Find out if the AI 90 data is alphabetic or numeric or both */
alpha = 0;
alphanum = 0;
numeric = 0;
for(i = 0; i < strlen(ninety); i++) {
if ((ninety[i] >= 'A') && (ninety[i] <= 'Z')) {
/* Character is alphabetic */
alpha += 1;
}
if ((ninety[i] >= '0') && (ninety[i] <= '9')) {
/* Character is numeric */
numeric += 1;
}
switch(ninety[i]) {
case '*':
case ',':
case '-':
case '.':
case '/': alphanum += 1; break;
}
if (!(((ninety[i] >= '0') && (ninety[i] <= '9')) || ((ninety[i] >= 'A') && (ninety[i] <= 'Z')))) {
if((ninety[i] != '*') && (ninety[i] != ',') && (ninety[i] != '-') && (ninety[i] != '.') && (ninety[i] != '/')) {
/* An Invalid AI 90 character */
strcpy(symbol->errtxt, "Invalid AI 90 data");
return ZERROR_INVALID_DATA;
}
}
}
/* must start with 0, 1, 2 or 3 digits followed by an uppercase character */
test1 = -1;
for(i = 3; i >= 0; i--) {
if ((ninety[i] >= 'A') && (ninety[i] <= 'Z')) {
test1 = i;
}
}
test2 = 0;
for(i = 0; i < test1; i++) {
if (!((ninety[i] >= '0') && (ninety[i] <= '9'))) {
test2 = 1;
}
}
/* leading zeros are not permitted */
test3 = 0;
if((test1 >= 1) && (ninety[0] == '0')) { test3 = 1; }
if((test1 != -1) && (test2 != 1) && (test3 == 0)) {
/* Encodation method "11" can be used */
concat(binary_string, "11");
numeric -= test1;
alpha --;
/* Decide on numeric, alpha or alphanumeric mode */
/* Alpha mode is a special mode for AI 90 */
if(alphanum > 0) {
/* Alphanumeric mode */
concat(binary_string, "0");
ai90_mode = 1;
} else {
if(alpha > numeric) {
/* Alphabetic mode */
concat(binary_string, "11");
ai90_mode = 2;
} else {
/* Numeric mode */
concat(binary_string, "10");
ai90_mode = 3;
}
}
next_ai_posn = 2 + strlen(ninety);
if(source[next_ai_posn] == '[') {
/* There are more AIs afterwords */
if((source[next_ai_posn + 1] == '2') && (source[next_ai_posn + 2] == '1')) {
/* AI 21 follows */
ai_crop = 1;
}
if((source[next_ai_posn + 1] == '8') && (source[next_ai_posn + 2] == '0') && (source[next_ai_posn + 3] == '0') && (source[next_ai_posn + 4] == '4')) {
/* AI 8004 follows */
ai_crop = 2;
}
}
switch(ai_crop) {
case 0: concat(binary_string, "0"); break;
case 1: concat(binary_string, "10"); break;
case 2: concat(binary_string, "11"); break;
}
if(test1 == 0) {
strcpy(numeric_part, "0");
} else {
for(i = 0; i < test1; i++) {
numeric_part[i] = ninety[i];
}
numeric_part[i] = '\0';
}
numeric_value = atoi(numeric_part);
table3_letter = -1;
if(numeric_value < 31) {
switch(ninety[test1]) {
case 'B': table3_letter = 0; break;
case 'D': table3_letter = 1; break;
case 'H': table3_letter = 2; break;
case 'I': table3_letter = 3; break;
case 'J': table3_letter = 4; break;
case 'K': table3_letter = 5; break;
case 'L': table3_letter = 6; break;
case 'N': table3_letter = 7; break;
case 'P': table3_letter = 8; break;
case 'Q': table3_letter = 9; break;
case 'R': table3_letter = 10; break;
case 'S': table3_letter = 11; break;
case 'T': table3_letter = 12; break;
case 'V': table3_letter = 13; break;
case 'W': table3_letter = 14; break;
case 'Z': table3_letter = 15; break;
}
}
if(table3_letter != -1) {
/* Encoding can be done according to 5.2.2 c) 2) */
/* five bit binary string representing value before letter */
mask = 0x10;
for(j = 0; j < 5; j++) {
if((numeric_value & mask) == 0x00) {
concat(binary_string, "0");
} else {
concat(binary_string, "1");
}
mask = mask >> 1;
}
/* followed by four bit representation of letter from Table 3 */
mask = 0x08;
for(j = 0; j < 4; j++) {
if((table3_letter & mask) == 0x00) {
concat(binary_string, "0");
} else {
concat(binary_string, "1");
}
mask = mask >> 1;
}
} else {
/* Encoding is done according to 5.2.2 c) 3) */
concat(binary_string, "11111");
/* ten bit representation of number */
mask = 0x200;
for(j = 0; j < 10; j++) {
if((numeric_value & mask) == 0x00) {
concat(binary_string, "0");
} else {
concat(binary_string, "1");
}
mask = mask >> 1;
}
/* five bit representation of ASCII character */
mask = 0x10;
for(j = 0; j < 5; j++) {
if(((ninety[test1] - 65) & mask) == 0x00) {
concat(binary_string, "0");
} else {
concat(binary_string, "1");
}
mask = mask >> 1;
}
}
read_posn = test1 + 3;
} else {
/* Use general field encodation instead */
concat(binary_string, "0");
read_posn = 0;
}
}
/* Now encode the rest of the AI 90 data field */
if(ai90_mode == 2) {
/* Alpha encodation (section 5.2.3) */
do {
if((source[read_posn] >= '0') && (source[read_posn] <= '9')) {
mask = 0x10;
for(j = 0; j < 5; j++) {