Forum: https://forum.taichi.graphics/
Documentation | Chat | taichi-nightly | taichi-nightly-cuda-10-0 | taichi-nightly-cuda-10-1 |
---|---|---|---|---|
# CPU only. No GPU/CUDA needed. (Linux, OS X and Windows)
python3 -m pip install taichi-nightly
# With GPU (CUDA 10.0) support (Linux only)
python3 -m pip install taichi-nightly-cuda-10-0
# With GPU (CUDA 10.1) support (Linux only)
python3 -m pip install taichi-nightly-cuda-10-1
Linux (CUDA) | OS X | Windows | |
---|---|---|---|
Build | |||
PyPI |
High-Performance Computation on Sparse Data Structures [Paper] [Video] [Language Details] [Taichi Compiler Developer Installation]
- (Dec 3, 2019) v0.2.1 released.
- Improved type mismatch error message
- native
min
/max
supprt - Tensor access index dimensionality checking
Matrix.to_numpy
,Matrix.zero
,Matrix.identity
,Matrix.fill
- Warning instead of error on lossy stores
- Added some initial support for cross-referencing local variables in different offloaded blocks.
- (Nov 28, 2019) v0.2.0 released.
- More friendly syntax error when passing non-compile-time-constant values to
ti.static
- Systematically resolved the variable name resolution issue
- Better interaction with numpy:
numpy
arrays passed as ati.ext_arr()
[examples]i32/f32/i64/f64
data type support for numpy- Multidimensional numpy arrays now supported in Taichi kernels
Tensor.to_numpy()
andTensor.from_numpy(numpy.ndarray)
supported [examples]- Corresponding PyTorch tensor interaction will be supported very soon. Now only 1D f32 PyTorch tensors supproted when using
ti.ext_arr()
. Please use numpy arrays as intermediate buffers for now
- Indexing arrays with an incorrect number of indices now results in a syntax error
- Tensor shape reflection: [examples]
Tensor.dim()
to retrieve the dimensionality of a global tensorTensor.shape()
to retrieve the shape of a global tensor- Note the above queries will cause data structures to be materialized
struct-for
(e.g.for i, j in x
) now supports iterating over tensors with non power-of-two dimensions- Handy tensor filling: [examples]
Tensor.fill(x)
to set all entries tox
Matrix.fill(x)
to set all entries tox
, wherex
can be a scalar orti.Matrix
of the same size
- Reduced python package size
struct-for
with grouped indices for better metaprogramming, especially in writing dimensionality-independent code, in e.g. physical simulation: [examples]
- More friendly syntax error when passing non-compile-time-constant values to
for I in ti.grouped(x): # I is a vector of size x.dim() and data type i32
x[I] = 0
# If tensor x is 2D
for I in ti.grouped(x): # I is a vector of size x.dim() and data type i32
y[I + ti.Vector([0, 1])] = I[0] + I[1]
# is equivalent to
for i, j in x:
y[i, j + 1] = i + j
-
(Nov 27, 2019) v0.1.5 released.
- Better modular programming support
- Disalow the use of
ti.static
outside Taichi kernels - Documentation improvements (WIP)
- Codegen bug fixes
- Special thanks to Andrew Spielberg and KLozes for bug report and feedback.
-
(Nov 22, 2019) v0.1.3 released.
- Object-oriented programming. [Example]
- native Python function translation in Taichi kernels:
- Use
print
instead ofti.print
- Use
int()
instead ofti.cast(x, ti.i32)
(orti.cast(x, ti.i64)
if your default integer precision is 64 bit) - Use
float()
instead ofti.cast(x, ti.f32)
(orti.cast(x, ti.f64)
if your default float-point precision is 64 bit) - Use
abs
instead ofti.abs
- Use
ti.static_print
for compile-time printing
- Use
-
(Nov 16, 2019) v0.1.0 released. Fixed PyTorch interface.
-
(Nov 12, 2019) v0.0.87 released.
- Added experimental Windows support with a [known issue] regarding virtual memory allocation, which will potentially limit the scalability of Taichi programs (If you are a Windows expert, please let me know how to solve this. Thanks!). Most examples work on Windows now.
- CUDA march autodetection;
- Complex kernel to override autodiff.
-
(Nov 4, 2019) v0.0.85 released.
ti.stop_grad
for stopping gradients during backpropagation. [Example];- Compatibility improvements on Linux and OS X;
- Minor bug fixes.
-
(Nov 1, 2019) v0.0.77 released.
- Python wheels now support OS X 10.14+;
- LLVM is now the default backend. No need to install
gcc-7
orclang-7
anymore. To use legacy backends,export TI_LLVM=0
; - LLVM compilation speed is improved by 2x;
- More friendly syntax error messages.
-
(Oct 30, 2019) v0.0.72 released.
- LLVM GPU backend now as fast as the legacy (yet optimized) CUDA backend. To enable,
export TI_LLVM=1
; - Bug fixes: LLVM
struct for
list generation.
- LLVM GPU backend now as fast as the legacy (yet optimized) CUDA backend. To enable,
-
(Oct 29, 2019) v0.0.71 released. LLVM GPU backend performance greatly improved. Frontend compiler now emits readable syntax error messages.
-
(Oct 28, 2019) v0.0.70 released. This version comes with experimental LLVM backends for x86_64 and CUDA (via NVVM/PTX). GPU kernel compilation speed is improved by 10x. To enable, update the taichi package and
export TI_LLVM=1
. -
(Oct 24, 2019) Python wheels (v0.0.61) released for Python 3.6/3.7 and CUDA 10.0/10.1 on Ubuntu 16.04+. Contributors of this release include Yuanming Hu, robbertvc, Zhoutong Zhang, Tao Du, Srinivas Kaza, and Kenneth Lozes.
-
(Oct 22, 2019) Added support for kernel templates. Kernel templates allow users to pass in taichi tensors and compile-time constants as kernel parameters.
-
(Oct 9, 2019) Compatibility improvements. Added a basic PyTorch interface. [Example].
Notes:
- You still need to clone this repo for demo scripts under
examples
. You do not need to executeinstall.py
ordev_setup.py
. After installation usingpip
you can simply go toexamples
and execute, e.g.,python3 mpm_fluid.py
. - Make sure you clear your legacy Taichi installation (if applicable) by cleaning the environment variables (delete
TAICHI_REPO_DIR
, and remove legacy taichi fromPYTHONPATH
) in your.bashrc
or.zshrc
. Or you can simply do this in your shell to temporarily clear them:
export PYTHONPATH=
export TAICHI_REPO_DIR=
The Taichi Library [Legacy branch]
Taichi is an open-source computer graphics library that aims to provide easy-to-use infrastructures for computer graphics R&D. It's written in C++14 and wrapped friendly with Python.
- May 17, 2019: Giga-Voxel SPGrid Topology Optimization Solver is released!
- March 4, 2019: MLS-MPM/CPIC solver is now MIT-licensed!
- August 14, 2018: MLS-MPM/CPIC solver reloaded! It delivers 4-14x performance boost over the previous state of the art on CPUs.