-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.py
142 lines (111 loc) · 5.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import tensorflow as tf
import numpy as np
import time
from data_process import process_data, process_data_c
from utils import MultiAcc, MultiAcc_C, RealAnswer, ScoreRank, InSet, InnerRight
from sklearn import cross_validation, metrics
from model import IRN, IRN_C
flags = tf.app.flags
flags.DEFINE_integer("edim", 50, "words vector dimension [50]")
flags.DEFINE_integer("nhop", 3, "number of hops [2/3+1]")
flags.DEFINE_integer("batch_size", 50, "batch size to use during training [50]")
flags.DEFINE_integer("nepoch", 5000, "number of epoch to use during training [1000]")
flags.DEFINE_integer("inner_nepoch",3, "PRN inner loop [5]")
flags.DEFINE_float("init_lr", 0.001, "initial learning rate")
flags.DEFINE_float("epsilon", 1e-8, "Epsilon value for Adam Optimizer.")
#flags.DEFINE_float("init_hid", 0.1, "initial internal state value [0.1]")
#flags.DEFINE_float("init_std", 0.05, "weight initialization std [0.05]")
flags.DEFINE_float("max_grad_norm", 20, "clip gradients to this norm [20]")
flags.DEFINE_string("dataset", "pq", "pq2h/pq3h/pql2h/pql3h/wc/")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "checkpoint directory")
flags.DEFINE_boolean("unseen",False,"True to hide 3 relations when training [False]")
FLAGS = flags.FLAGS
FLAGS.data_dir = "data/WC2014"
FLAGS.KB_file = "WC2014"
if FLAGS.dataset == 'wc1h':
FLAGS.data_file = "WC-P1" #"WC-C/P1/P2/P"
elif FLAGS.dataset == 'wc2h':
FLAGS.data_file = "WC-P2" #"WC-C/P1/P2/P"
elif FLAGS.dataset == 'wcm':
FLAGS.data_file = "WC-P" #"WC-C/P1/P2/P"
elif FLAGS.dataset == 'wcc':
FLAGS.data_file = "WC-C" #"WC-C/P1/P2/P"
elif FLAGS.dataset == 'pql2h':
FLAGS.data_dir = "PathQuestion"
FLAGS.data_file = 'PQL-2H'
FLAGS.KB_file = 'PQL2-KB'
elif FLAGS.dataset == 'pql3h':
FLAGS.data_dir = "PathQuestion"
FLAGS.data_file = 'PQL-3H'
FLAGS.KB_file = 'PQL3-KB'
elif FLAGS.dataset == 'pq2h':
FLAGS.data_dir = "PathQuestion"
FLAGS.data_file = 'PQ-2H'
FLAGS.KB_file = '2H-kb'
elif FLAGS.dataset == 'pq3h':
FLAGS.data_dir = "PathQuestion"
FLAGS.data_file = 'PQ-3H'
FLAGS.KB_file = '3H-kb'
def main(_):
word2id = {}
ent2id = {}
rel2id = {}
words = set()
relations = set()
entities = set()
FLAGS.checkpoint_dir = os.path.join(FLAGS.checkpoint_dir,FLAGS.data_file)
FLAGS.checkpoint_dir = os.path.join(FLAGS.checkpoint_dir,FLAGS.KB_file)
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
KB_file = '%s/%s.txt' % (FLAGS.data_dir, FLAGS.KB_file)
data_file = '%s/%s.txt' % (FLAGS.data_dir, FLAGS.data_file)
start = time.time()
if FLAGS.data_file == "WC-C":
Q,A,P,S,Triples,FLAGS.query_size = process_data_c(KB_file, data_file, word2id, rel2id, ent2id, words, relations, entities)
FLAGS.path_size = len(P[0][0]) #5
else:
Q,A,P,S,Triples,FLAGS.query_size = process_data(KB_file, data_file, word2id, rel2id, ent2id, words, relations, entities)
FLAGS.path_size = len(P[0]) #5 or 7 or
FLAGS.nhop = FLAGS.path_size / 2
print ("read data cost %f seconds" %(time.time()-start))
FLAGS.nwords = len(word2id)
FLAGS.nrels = len(rel2id)
FLAGS.nents = len(ent2id)
trainQ, testQ, trainA, testA, trainP, testP, trainS, testS = cross_validation.train_test_split(Q, A, P, S, test_size=.1, random_state=123)
# for UNSEEN relations (incomplete kb setting, change data_utils.py)
if FLAGS.unseen:
id_c=[]
for idx in range(trainQ.shape[0]):
if trainP[idx][-4] == 1 or trainP[idx][-4]==2 or trainP[idx][-4]==3:
id_c.append(idx)
trainQ = np.delete(trainQ,id_c,axis=0)
trainA = np.delete(trainA,id_c,axis=0)
trainP = np.delete(trainP,id_c,axis=0)
trainS = np.delete(trainS,id_c,axis=0)
#
#other data and some flags
#
id2word = dict(zip(word2id.values(), word2id.keys()))
id2rel = dict(zip(rel2id.values(), rel2id.keys())) #{0: '<end>', 1: 'cause_of_death', 2: 'gender', 3: 'profession', 4: 'institution', 5: 'religion', 6: 'parents', 7: 'location', 8: 'place_of_birth', 9: 'nationality', 10: 'place_of_death', 11: 'spouse', 12: 'children', 13: 'ethnicity'}
test_labels = np.argmax(testA, axis=1)
print(flags.FLAGS.__flags)
with tf.Session() as sess:
if not FLAGS.data_file == "WC-C":
model = IRN(FLAGS,sess)
elif FLAGS.data_file == "WC-C":
model = IRN_C(FLAGS,sess)
model.load()
test_preds = model.predict(Triples,testQ, testP)
if not FLAGS.data_file == "WC-C":
test_acc = MultiAcc(testP,test_preds,FLAGS.path_size)
elif FLAGS.data_file == "WC-C":
test_acc = MultiAcc_C(testP,test_preds)
test_true_acc = InSet(testP,testS,test_preds)
print('-----------------------')
print('Test Data',data_file)
print('Test Accuracy:', test_true_acc)
print('Test Accuracy for whole Path:', test_acc)
print('-----------------------')
if __name__ == '__main__':
tf.app.run()