forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
InferAddressSpaces.cpp
897 lines (779 loc) · 33.7 KB
/
InferAddressSpaces.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// CUDA C/C++ includes memory space designation as variable type qualifers (such
// as __global__ and __shared__). Knowing the space of a memory access allows
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
// shared memory can be translated to `ld.shared` which is roughly 10% faster
// than a generic `ld` on an NVIDIA Tesla K40c.
//
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
// compilers must infer the memory space of an address expression from
// type-qualified variables.
//
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
// places only type-qualified variables in specific address spaces, and then
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
// (so-called the generic address space) for other instructions to use.
//
// For example, the Clang translates the following CUDA code
// __shared__ float a[10];
// float v = a[i];
// to
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
// %v = load float, float* %1 ; emits ld.f32
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
// redirected to %0 (the generic version of @a).
//
// The optimization implemented in this file propagates specific address spaces
// from type-qualified variable declarations to its users. For example, it
// optimizes the above IR to
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
// codegen is able to emit ld.shared.f32 for %v.
//
// Address space inference works in two steps. First, it uses a data-flow
// analysis to infer as many generic pointers as possible to point to only one
// specific address space. In the above example, it can prove that %1 only
// points to addrspace(3). This algorithm was published in
// CUDA: Compiling and optimizing for a GPU platform
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
// ICCS 2012
//
// Then, address space inference replaces all refinable generic pointers with
// equivalent specific pointers.
//
// The major challenge of implementing this optimization is handling PHINodes,
// which may create loops in the data flow graph. This brings two complications.
//
// First, the data flow analysis in Step 1 needs to be circular. For example,
// %generic.input = addrspacecast float addrspace(3)* %input to float*
// loop:
// %y = phi [ %generic.input, %y2 ]
// %y2 = getelementptr %y, 1
// %v = load %y2
// br ..., label %loop, ...
// proving %y specific requires proving both %generic.input and %y2 specific,
// but proving %y2 specific circles back to %y. To address this complication,
// the data flow analysis operates on a lattice:
// uninitialized > specific address spaces > generic.
// All address expressions (our implementation only considers phi, bitcast,
// addrspacecast, and getelementptr) start with the uninitialized address space.
// The monotone transfer function moves the address space of a pointer down a
// lattice path from uninitialized to specific and then to generic. A join
// operation of two different specific address spaces pushes the expression down
// to the generic address space. The analysis completes once it reaches a fixed
// point.
//
// Second, IR rewriting in Step 2 also needs to be circular. For example,
// converting %y to addrspace(3) requires the compiler to know the converted
// %y2, but converting %y2 needs the converted %y. To address this complication,
// we break these cycles using "undef" placeholders. When converting an
// instruction `I` to a new address space, if its operand `Op` is not converted
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
// For instance, our algorithm first converts %y to
// %y' = phi float addrspace(3)* [ %input, undef ]
// Then, it converts %y2 to
// %y2' = getelementptr %y', 1
// Finally, it fixes the undef in %y' so that
// %y' = phi float addrspace(3)* [ %input, %y2' ]
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#define DEBUG_TYPE "infer-address-spaces"
using namespace llvm;
namespace {
static const unsigned UninitializedAddressSpace = ~0u;
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
/// \brief InferAddressSpaces
class InferAddressSpaces : public FunctionPass {
/// Target specific address space which uses of should be replaced if
/// possible.
unsigned FlatAddrSpace;
public:
static char ID;
InferAddressSpaces() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
private:
// Returns the new address space of V if updated; otherwise, returns None.
Optional<unsigned>
updateAddressSpace(const Value &V,
const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
// Tries to infer the specific address space of each address expression in
// Postorder.
void inferAddressSpaces(const std::vector<Value *> &Postorder,
ValueToAddrSpaceMapTy *InferredAddrSpace) const;
bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
// Changes the flat address expressions in function F to point to specific
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
// all flat expressions in the use-def graph of function F.
bool
rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
const ValueToAddrSpaceMapTy &InferredAddrSpace,
Function *F) const;
void appendsFlatAddressExpressionToPostorderStack(
Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
DenseSet<Value *> *Visited) const;
bool rewriteIntrinsicOperands(IntrinsicInst *II,
Value *OldV, Value *NewV) const;
void collectRewritableIntrinsicOperands(
IntrinsicInst *II,
std::vector<std::pair<Value *, bool>> *PostorderStack,
DenseSet<Value *> *Visited) const;
std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Value *cloneValueWithNewAddressSpace(
Value *V, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) const;
unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
};
} // end anonymous namespace
char InferAddressSpaces::ID = 0;
namespace llvm {
void initializeInferAddressSpacesPass(PassRegistry &);
}
INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
false, false)
// Returns true if V is an address expression.
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
// getelementptr operators.
static bool isAddressExpression(const Value &V) {
if (!isa<Operator>(V))
return false;
switch (cast<Operator>(V).getOpcode()) {
case Instruction::PHI:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::GetElementPtr:
case Instruction::Select:
return true;
default:
return false;
}
}
// Returns the pointer operands of V.
//
// Precondition: V is an address expression.
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
assert(isAddressExpression(V));
const Operator &Op = cast<Operator>(V);
switch (Op.getOpcode()) {
case Instruction::PHI: {
auto IncomingValues = cast<PHINode>(Op).incoming_values();
return SmallVector<Value *, 2>(IncomingValues.begin(),
IncomingValues.end());
}
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::GetElementPtr:
return {Op.getOperand(0)};
case Instruction::Select:
return {Op.getOperand(1), Op.getOperand(2)};
default:
llvm_unreachable("Unexpected instruction type.");
}
}
// TODO: Move logic to TTI?
bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
Value *OldV,
Value *NewV) const {
Module *M = II->getParent()->getParent()->getParent();
switch (II->getIntrinsicID()) {
case Intrinsic::objectsize:
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec: {
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
Function *NewDecl =
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return true;
}
default:
return false;
}
}
// TODO: Move logic to TTI?
void InferAddressSpaces::collectRewritableIntrinsicOperands(
IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
DenseSet<Value *> *Visited) const {
switch (II->getIntrinsicID()) {
case Intrinsic::objectsize:
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
PostorderStack, Visited);
break;
default:
break;
}
}
// Returns all flat address expressions in function F. The elements are
// If V is an unvisited flat address expression, appends V to PostorderStack
// and marks it as visited.
void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
DenseSet<Value *> *Visited) const {
assert(V->getType()->isPointerTy());
if (isAddressExpression(*V) &&
V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
if (Visited->insert(V).second)
PostorderStack->push_back(std::make_pair(V, false));
}
}
// Returns all flat address expressions in function F. The elements are ordered
// ordered in postorder.
std::vector<Value *>
InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
// This function implements a non-recursive postorder traversal of a partial
// use-def graph of function F.
std::vector<std::pair<Value *, bool>> PostorderStack;
// The set of visited expressions.
DenseSet<Value *> Visited;
auto PushPtrOperand = [&](Value *Ptr) {
appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
&Visited);
};
// We only explore address expressions that are reachable from loads and
// stores for now because we aim at generating faster loads and stores.
for (Instruction &I : instructions(F)) {
if (auto *LI = dyn_cast<LoadInst>(&I))
PushPtrOperand(LI->getPointerOperand());
else if (auto *SI = dyn_cast<StoreInst>(&I))
PushPtrOperand(SI->getPointerOperand());
else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
PushPtrOperand(RMW->getPointerOperand());
else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
PushPtrOperand(CmpX->getPointerOperand());
else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
// For memset/memcpy/memmove, any pointer operand can be replaced.
PushPtrOperand(MI->getRawDest());
// Handle 2nd operand for memcpy/memmove.
if (auto *MTI = dyn_cast<MemTransferInst>(MI))
PushPtrOperand(MTI->getRawSource());
} else if (auto *II = dyn_cast<IntrinsicInst>(&I))
collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
// FIXME: Handle vectors of pointers
if (Cmp->getOperand(0)->getType()->isPointerTy()) {
PushPtrOperand(Cmp->getOperand(0));
PushPtrOperand(Cmp->getOperand(1));
}
}
}
std::vector<Value *> Postorder; // The resultant postorder.
while (!PostorderStack.empty()) {
// If the operands of the expression on the top are already explored,
// adds that expression to the resultant postorder.
if (PostorderStack.back().second) {
Postorder.push_back(PostorderStack.back().first);
PostorderStack.pop_back();
continue;
}
// Otherwise, adds its operands to the stack and explores them.
PostorderStack.back().second = true;
for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
&Visited);
}
}
return Postorder;
}
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
// of OperandUse.get() in the new address space. If the clone is not ready yet,
// returns an undef in the new address space as a placeholder.
static Value *operandWithNewAddressSpaceOrCreateUndef(
const Use &OperandUse, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) {
Value *Operand = OperandUse.get();
Type *NewPtrTy =
Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
if (Constant *C = dyn_cast<Constant>(Operand))
return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
return NewOperand;
UndefUsesToFix->push_back(&OperandUse);
return UndefValue::get(NewPtrTy);
}
// Returns a clone of `I` with its operands converted to those specified in
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
// operand whose address space needs to be modified might not exist in
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
// adds that operand use to UndefUsesToFix so that caller can fix them later.
//
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
// from a pointer whose type already matches. Therefore, this function returns a
// Value* instead of an Instruction*.
static Value *cloneInstructionWithNewAddressSpace(
Instruction *I, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) {
Type *NewPtrType =
I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
if (I->getOpcode() == Instruction::AddrSpaceCast) {
Value *Src = I->getOperand(0);
// Because `I` is flat, the source address space must be specific.
// Therefore, the inferred address space must be the source space, according
// to our algorithm.
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
if (Src->getType() != NewPtrType)
return new BitCastInst(Src, NewPtrType);
return Src;
}
// Computes the converted pointer operands.
SmallVector<Value *, 4> NewPointerOperands;
for (const Use &OperandUse : I->operands()) {
if (!OperandUse.get()->getType()->isPointerTy())
NewPointerOperands.push_back(nullptr);
else
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
}
switch (I->getOpcode()) {
case Instruction::BitCast:
return new BitCastInst(NewPointerOperands[0], NewPtrType);
case Instruction::PHI: {
assert(I->getType()->isPointerTy());
PHINode *PHI = cast<PHINode>(I);
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
NewPHI->addIncoming(NewPointerOperands[OperandNo],
PHI->getIncomingBlock(Index));
}
return NewPHI;
}
case Instruction::GetElementPtr: {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
GEP->getSourceElementType(), NewPointerOperands[0],
SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
NewGEP->setIsInBounds(GEP->isInBounds());
return NewGEP;
}
case Instruction::Select: {
assert(I->getType()->isPointerTy());
return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
NewPointerOperands[2], "", nullptr, I);
}
default:
llvm_unreachable("Unexpected opcode");
}
}
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
// constant expression `CE` with its operands replaced as specified in
// ValueWithNewAddrSpace.
static Value *cloneConstantExprWithNewAddressSpace(
ConstantExpr *CE, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace) {
Type *TargetType =
CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
// Because CE is flat, the source address space must be specific.
// Therefore, the inferred address space must be the source space according
// to our algorithm.
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
NewAddrSpace);
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
}
if (CE->getOpcode() == Instruction::BitCast) {
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
return ConstantExpr::getAddrSpaceCast(CE, TargetType);
}
if (CE->getOpcode() == Instruction::Select) {
Constant *Src0 = CE->getOperand(1);
Constant *Src1 = CE->getOperand(2);
if (Src0->getType()->getPointerAddressSpace() ==
Src1->getType()->getPointerAddressSpace()) {
return ConstantExpr::getSelect(
CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
ConstantExpr::getAddrSpaceCast(Src1, TargetType));
}
}
// Computes the operands of the new constant expression.
SmallVector<Constant *, 4> NewOperands;
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
Constant *Operand = CE->getOperand(Index);
// If the address space of `Operand` needs to be modified, the new operand
// with the new address space should already be in ValueWithNewAddrSpace
// because (1) the constant expressions we consider (i.e. addrspacecast,
// bitcast, and getelementptr) do not incur cycles in the data flow graph
// and (2) this function is called on constant expressions in postorder.
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
NewOperands.push_back(cast<Constant>(NewOperand));
} else {
// Otherwise, reuses the old operand.
NewOperands.push_back(Operand);
}
}
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Needs to specify the source type while constructing a getelementptr
// constant expression.
return CE->getWithOperands(
NewOperands, TargetType, /*OnlyIfReduced=*/false,
NewOperands[0]->getType()->getPointerElementType());
}
return CE->getWithOperands(NewOperands, TargetType);
}
// Returns a clone of the value `V`, with its operands replaced as specified in
// ValueWithNewAddrSpace. This function is called on every flat address
// expression whose address space needs to be modified, in postorder.
//
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Value *V, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) const {
// All values in Postorder are flat address expressions.
assert(isAddressExpression(*V) &&
V->getType()->getPointerAddressSpace() == FlatAddrSpace);
if (Instruction *I = dyn_cast<Instruction>(V)) {
Value *NewV = cloneInstructionWithNewAddressSpace(
I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
if (NewI->getParent() == nullptr) {
NewI->insertBefore(I);
NewI->takeName(I);
}
}
return NewV;
}
return cloneConstantExprWithNewAddressSpace(
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
}
// Defines the join operation on the address space lattice (see the file header
// comments).
unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
unsigned AS2) const {
if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
return FlatAddrSpace;
if (AS1 == UninitializedAddressSpace)
return AS2;
if (AS2 == UninitializedAddressSpace)
return AS1;
// The join of two different specific address spaces is flat.
return (AS1 == AS2) ? AS1 : FlatAddrSpace;
}
bool InferAddressSpaces::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
FlatAddrSpace = TTI.getFlatAddressSpace();
if (FlatAddrSpace == UninitializedAddressSpace)
return false;
// Collects all flat address expressions in postorder.
std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
// Runs a data-flow analysis to refine the address spaces of every expression
// in Postorder.
ValueToAddrSpaceMapTy InferredAddrSpace;
inferAddressSpaces(Postorder, &InferredAddrSpace);
// Changes the address spaces of the flat address expressions who are inferred
// to point to a specific address space.
return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
}
void InferAddressSpaces::inferAddressSpaces(
const std::vector<Value *> &Postorder,
ValueToAddrSpaceMapTy *InferredAddrSpace) const {
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
// Initially, all expressions are in the uninitialized address space.
for (Value *V : Postorder)
(*InferredAddrSpace)[V] = UninitializedAddressSpace;
while (!Worklist.empty()) {
Value *V = Worklist.pop_back_val();
// Tries to update the address space of the stack top according to the
// address spaces of its operands.
DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
if (!NewAS.hasValue())
continue;
// If any updates are made, grabs its users to the worklist because
// their address spaces can also be possibly updated.
DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
(*InferredAddrSpace)[V] = NewAS.getValue();
for (Value *User : V->users()) {
// Skip if User is already in the worklist.
if (Worklist.count(User))
continue;
auto Pos = InferredAddrSpace->find(User);
// Our algorithm only updates the address spaces of flat address
// expressions, which are those in InferredAddrSpace.
if (Pos == InferredAddrSpace->end())
continue;
// Function updateAddressSpace moves the address space down a lattice
// path. Therefore, nothing to do if User is already inferred as flat (the
// bottom element in the lattice).
if (Pos->second == FlatAddrSpace)
continue;
Worklist.insert(User);
}
}
}
Optional<unsigned> InferAddressSpaces::updateAddressSpace(
const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
assert(InferredAddrSpace.count(&V));
// The new inferred address space equals the join of the address spaces
// of all its pointer operands.
unsigned NewAS = UninitializedAddressSpace;
const Operator &Op = cast<Operator>(V);
if (Op.getOpcode() == Instruction::Select) {
Value *Src0 = Op.getOperand(1);
Value *Src1 = Op.getOperand(2);
auto I = InferredAddrSpace.find(Src0);
unsigned Src0AS = (I != InferredAddrSpace.end()) ?
I->second : Src0->getType()->getPointerAddressSpace();
auto J = InferredAddrSpace.find(Src1);
unsigned Src1AS = (J != InferredAddrSpace.end()) ?
J->second : Src1->getType()->getPointerAddressSpace();
auto *C0 = dyn_cast<Constant>(Src0);
auto *C1 = dyn_cast<Constant>(Src1);
// If one of the inputs is a constant, we may be able to do a constant
// addrspacecast of it. Defer inferring the address space until the input
// address space is known.
if ((C1 && Src0AS == UninitializedAddressSpace) ||
(C0 && Src1AS == UninitializedAddressSpace))
return None;
if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
NewAS = Src1AS;
else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
NewAS = Src0AS;
else
NewAS = joinAddressSpaces(Src0AS, Src1AS);
} else {
for (Value *PtrOperand : getPointerOperands(V)) {
auto I = InferredAddrSpace.find(PtrOperand);
unsigned OperandAS = I != InferredAddrSpace.end() ?
I->second : PtrOperand->getType()->getPointerAddressSpace();
// join(flat, *) = flat. So we can break if NewAS is already flat.
NewAS = joinAddressSpaces(NewAS, OperandAS);
if (NewAS == FlatAddrSpace)
break;
}
}
unsigned OldAS = InferredAddrSpace.lookup(&V);
assert(OldAS != FlatAddrSpace);
if (OldAS == NewAS)
return None;
return NewAS;
}
/// \p returns true if \p U is the pointer operand of a memory instruction with
/// a single pointer operand that can have its address space changed by simply
/// mutating the use to a new value.
static bool isSimplePointerUseValidToReplace(Use &U) {
User *Inst = U.getUser();
unsigned OpNo = U.getOperandNo();
if (auto *LI = dyn_cast<LoadInst>(Inst))
return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
if (auto *SI = dyn_cast<StoreInst>(Inst))
return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
!CmpX->isVolatile();
}
return false;
}
/// Update memory intrinsic uses that require more complex processing than
/// simple memory instructions. Thse require re-mangling and may have multiple
/// pointer operands.
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
Value *NewV) {
IRBuilder<> B(MI);
MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
B.CreateMemSet(NewV, MSI->getValue(),
MSI->getLength(), MSI->getAlignment(),
false, // isVolatile
TBAA, ScopeMD, NoAliasMD);
} else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
Value *Src = MTI->getRawSource();
Value *Dest = MTI->getRawDest();
// Be careful in case this is a self-to-self copy.
if (Src == OldV)
Src = NewV;
if (Dest == OldV)
Dest = NewV;
if (isa<MemCpyInst>(MTI)) {
MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
B.CreateMemCpy(Dest, Src, MTI->getLength(),
MTI->getAlignment(),
false, // isVolatile
TBAA, TBAAStruct, ScopeMD, NoAliasMD);
} else {
assert(isa<MemMoveInst>(MTI));
B.CreateMemMove(Dest, Src, MTI->getLength(),
MTI->getAlignment(),
false, // isVolatile
TBAA, ScopeMD, NoAliasMD);
}
} else
llvm_unreachable("unhandled MemIntrinsic");
MI->eraseFromParent();
return true;
}
// \p returns true if it is OK to change the address space of constant \p C with
// a ConstantExpr addrspacecast.
bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
assert(NewAS != UninitializedAddressSpace);
unsigned SrcAS = C->getType()->getPointerAddressSpace();
if (SrcAS == NewAS || isa<UndefValue>(C))
return true;
// Prevent illegal casts between different non-flat address spaces.
if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
return false;
if (isa<ConstantPointerNull>(C))
return true;
if (auto *Op = dyn_cast<Operator>(C)) {
// If we already have a constant addrspacecast, it should be safe to cast it
// off.
if (Op->getOpcode() == Instruction::AddrSpaceCast)
return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
if (Op->getOpcode() == Instruction::IntToPtr &&
Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
return true;
}
return false;
}
static Value::use_iterator skipToNextUser(Value::use_iterator I,
Value::use_iterator End) {
User *CurUser = I->getUser();
++I;
while (I != End && I->getUser() == CurUser)
++I;
return I;
}
bool InferAddressSpaces::rewriteWithNewAddressSpaces(
const std::vector<Value *> &Postorder,
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
// For each address expression to be modified, creates a clone of it with its
// pointer operands converted to the new address space. Since the pointer
// operands are converted, the clone is naturally in the new address space by
// construction.
ValueToValueMapTy ValueWithNewAddrSpace;
SmallVector<const Use *, 32> UndefUsesToFix;
for (Value* V : Postorder) {
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
}
}
if (ValueWithNewAddrSpace.empty())
return false;
// Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
for (const Use *UndefUse : UndefUsesToFix) {
User *V = UndefUse->getUser();
User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
unsigned OperandNo = UndefUse->getOperandNo();
assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
}
// Replaces the uses of the old address expressions with the new ones.
for (Value *V : Postorder) {
Value *NewV = ValueWithNewAddrSpace.lookup(V);
if (NewV == nullptr)
continue;
DEBUG(dbgs() << "Replacing the uses of " << *V
<< "\n with\n " << *NewV << '\n');
Value::use_iterator I, E, Next;
for (I = V->use_begin(), E = V->use_end(); I != E; ) {
Use &U = *I;
// Some users may see the same pointer operand in multiple operands. Skip
// to the next instruction.
I = skipToNextUser(I, E);
if (isSimplePointerUseValidToReplace(U)) {
// If V is used as the pointer operand of a compatible memory operation,
// sets the pointer operand to NewV. This replacement does not change
// the element type, so the resultant load/store is still valid.
U.set(NewV);
continue;
}
User *CurUser = U.getUser();
// Handle more complex cases like intrinsic that need to be remangled.
if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
continue;
}
if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
if (rewriteIntrinsicOperands(II, V, NewV))
continue;
}
if (isa<Instruction>(CurUser)) {
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
// If we can infer that both pointers are in the same addrspace,
// transform e.g.
// %cmp = icmp eq float* %p, %q
// into
// %cmp = icmp eq float addrspace(3)* %new_p, %new_q
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
int SrcIdx = U.getOperandNo();
int OtherIdx = (SrcIdx == 0) ? 1 : 0;
Value *OtherSrc = Cmp->getOperand(OtherIdx);
if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
Cmp->setOperand(OtherIdx, OtherNewV);
Cmp->setOperand(SrcIdx, NewV);
continue;
}
}
// Even if the type mismatches, we can cast the constant.
if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
Cmp->setOperand(SrcIdx, NewV);
Cmp->setOperand(OtherIdx,
ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
continue;
}
}
}
// Otherwise, replaces the use with flat(NewV).
if (Instruction *I = dyn_cast<Instruction>(V)) {
BasicBlock::iterator InsertPos = std::next(I->getIterator());
while (isa<PHINode>(InsertPos))
++InsertPos;
U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
} else {
U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
V->getType()));
}
}
}
if (V->use_empty())
RecursivelyDeleteTriviallyDeadInstructions(V);
}
return true;
}
FunctionPass *llvm::createInferAddressSpacesPass() {
return new InferAddressSpaces();
}