forked from zihangdai/xlnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
921 lines (742 loc) · 29.3 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import random
from absl import flags
import absl.logging as _logging # pylint: disable=unused-import
import numpy as np
import tensorflow as tf
import sentencepiece as spm
from prepro_utils import preprocess_text, encode_ids
special_symbols = {
"<unk>" : 0,
"<s>" : 1,
"</s>" : 2,
"<cls>" : 3,
"<sep>" : 4,
"<pad>" : 5,
"<mask>" : 6,
"<eod>" : 7,
"<eop>" : 8,
}
VOCAB_SIZE = 32000
UNK_ID = special_symbols["<unk>"]
CLS_ID = special_symbols["<cls>"]
SEP_ID = special_symbols["<sep>"]
MASK_ID = special_symbols["<mask>"]
EOD_ID = special_symbols["<eod>"]
def _int64_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _float_feature(values):
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def format_filename(prefix, bsz_per_host, seq_len, bi_data, suffix,
mask_alpha=5, mask_beta=1, reuse_len=None, uncased=False,
fixed_num_predict=None):
"""docs."""
if reuse_len is None:
reuse_len_str = ""
else:
reuse_len_str = "reuse-{}.".format(reuse_len)
if not uncased:
uncased_str = ""
else:
uncased_str = "uncased."
if bi_data:
bi_data_str = "bi"
else:
bi_data_str = "uni"
if fixed_num_predict is not None:
fnp_str = "fnp-{}.".format(fixed_num_predict)
else:
fnp_str = ""
file_name = "{}.bsz-{}.seqlen-{}.{}{}{}.alpha-{}.beta-{}.{}{}".format(
prefix, bsz_per_host, seq_len, reuse_len_str, uncased_str, bi_data_str,
mask_alpha, mask_beta, fnp_str, suffix)
return file_name
def _create_data(idx, input_paths):
# Load sentence-piece model
sp = spm.SentencePieceProcessor()
sp.Load(FLAGS.sp_path)
input_shards = []
total_line_cnt = 0
for input_path in input_paths:
input_data, sent_ids = [], []
sent_id, line_cnt = True, 0
tf.logging.info("Processing {}".format(input_path))
for line in tf.gfile.Open(input_path):
if line_cnt % 100000 == 0:
tf.logging.info("Loading line {}".format(line_cnt))
line_cnt += 1
if not line.strip():
if FLAGS.use_eod:
sent_id = not sent_id
cur_sent = [EOD_ID]
else:
continue
else:
cur_sent = preprocess_text(line.strip(), lower=FLAGS.uncased)
cur_sent = encode_ids(sp, cur_sent)
input_data.extend(cur_sent)
sent_ids.extend([sent_id] * len(cur_sent))
sent_id = not sent_id
tf.logging.info("Finish with line {}".format(line_cnt))
if line_cnt == 0:
continue
input_data = np.array(input_data, dtype=np.int64)
sent_ids = np.array(sent_ids, dtype=np.bool)
total_line_cnt += line_cnt
input_shards.append((input_data, sent_ids))
tf.logging.info("[Task {}] Total number line: {}".format(idx, total_line_cnt))
tfrecord_dir = os.path.join(FLAGS.save_dir, "tfrecords")
filenames, num_batch = [], 0
# Randomly shuffle input shards (with a fixed but distinct random seed)
np.random.seed(100 * FLAGS.task + FLAGS.pass_id)
perm_indices = np.random.permutation(len(input_shards))
tf.logging.info("Using perm indices {} for pass {}".format(
perm_indices.tolist(), FLAGS.pass_id))
input_data_list, sent_ids_list = [], []
prev_sent_id = None
for perm_idx in perm_indices:
input_data, sent_ids = input_shards[perm_idx]
# make sure the `send_ids[0] == not prev_sent_id`
if prev_sent_id is not None and sent_ids[0] == prev_sent_id:
sent_ids = np.logical_not(sent_ids)
# append to temporary list
input_data_list.append(input_data)
sent_ids_list.append(sent_ids)
# update `prev_sent_id`
prev_sent_id = sent_ids[-1]
input_data = np.concatenate(input_data_list)
sent_ids = np.concatenate(sent_ids_list)
file_name, cur_num_batch = create_tfrecords(
save_dir=tfrecord_dir,
basename="{}-{}-{}".format(FLAGS.split, idx, FLAGS.pass_id),
data=[input_data, sent_ids],
bsz_per_host=FLAGS.bsz_per_host,
seq_len=FLAGS.seq_len,
bi_data=FLAGS.bi_data,
sp=sp,
)
filenames.append(file_name)
num_batch += cur_num_batch
record_info = {
"filenames": filenames,
"num_batch": num_batch
}
return record_info
def create_data(_):
# Validate FLAGS
assert FLAGS.bsz_per_host % FLAGS.num_core_per_host == 0
if not FLAGS.use_tpu:
FLAGS.num_core_per_host = 1 # forced to be one
# Make workdirs
if not tf.gfile.Exists(FLAGS.save_dir):
tf.gfile.MakeDirs(FLAGS.save_dir)
tfrecord_dir = os.path.join(FLAGS.save_dir, "tfrecords")
if not tf.gfile.Exists(tfrecord_dir):
tf.gfile.MakeDirs(tfrecord_dir)
# Create and dump corpus_info from task 0
if FLAGS.task == 0:
corpus_info = {
"vocab_size": VOCAB_SIZE,
"bsz_per_host": FLAGS.bsz_per_host,
"num_core_per_host": FLAGS.num_core_per_host,
"seq_len": FLAGS.seq_len,
"reuse_len": FLAGS.reuse_len,
"uncased": FLAGS.uncased,
"bi_data": FLAGS.bi_data,
"mask_alpha": FLAGS.mask_alpha,
"mask_beta": FLAGS.mask_beta,
"num_predict": FLAGS.num_predict,
"use_eod": FLAGS.use_eod,
"sp_path": FLAGS.sp_path,
"input_glob": FLAGS.input_glob,
}
corpus_info_path = os.path.join(FLAGS.save_dir, "corpus_info.json")
with tf.gfile.Open(corpus_info_path, "w") as fp:
json.dump(corpus_info, fp)
# Interleavely split the work into FLAGS.num_task splits
file_paths = sorted(tf.gfile.Glob(FLAGS.input_glob))
tf.logging.info("Use glob: {}".format(FLAGS.input_glob))
tf.logging.info("Find {} files: {}".format(len(file_paths), file_paths))
task_file_paths = file_paths[FLAGS.task::FLAGS.num_task]
if not task_file_paths:
tf.logging.info("Exit: task {} has no file to process.".format(FLAGS.task))
return
tf.logging.info("Task {} process {} files: {}".format(
FLAGS.task, len(task_file_paths), task_file_paths))
record_info = _create_data(FLAGS.task, task_file_paths)
record_prefix = "record_info-{}-{}-{}".format(
FLAGS.split, FLAGS.task, FLAGS.pass_id)
record_name = format_filename(
prefix=record_prefix,
bsz_per_host=FLAGS.bsz_per_host,
seq_len=FLAGS.seq_len,
mask_alpha=FLAGS.mask_alpha,
mask_beta=FLAGS.mask_beta,
reuse_len=FLAGS.reuse_len,
bi_data=FLAGS.bi_data,
suffix="json",
uncased=FLAGS.uncased,
fixed_num_predict=FLAGS.num_predict)
record_info_path = os.path.join(tfrecord_dir, record_name)
with tf.gfile.Open(record_info_path, "w") as fp:
json.dump(record_info, fp)
def batchify(data, bsz_per_host, sent_ids=None):
num_step = len(data) // bsz_per_host
data = data[:bsz_per_host * num_step]
data = data.reshape(bsz_per_host, num_step)
if sent_ids is not None:
sent_ids = sent_ids[:bsz_per_host * num_step]
sent_ids = sent_ids.reshape(bsz_per_host, num_step)
if sent_ids is not None:
return data, sent_ids
return data
def _split_a_and_b(data, sent_ids, begin_idx, tot_len, extend_target=False):
"""Split two segments from `data` starting from the index `begin_idx`."""
data_len = data.shape[0]
if begin_idx + tot_len >= data_len:
tf.logging.info("[_split_a_and_b] returns None: "
"begin_idx {} + tot_len {} >= data_len {}".format(
begin_idx, tot_len, data_len))
return None
end_idx = begin_idx + 1
cut_points = []
while end_idx < data_len:
if sent_ids[end_idx] != sent_ids[end_idx - 1]:
if end_idx - begin_idx >= tot_len: break
cut_points.append(end_idx)
end_idx += 1
a_begin = begin_idx
if len(cut_points) == 0 or random.random() < 0.5:
label = 0
if len(cut_points) == 0:
a_end = end_idx
else:
a_end = random.choice(cut_points)
b_len = max(1, tot_len - (a_end - a_begin))
# (zihang): `data_len - 1` to account for extend_target
b_begin = random.randint(0, data_len - 1 - b_len)
b_end = b_begin + b_len
while b_begin > 0 and sent_ids[b_begin - 1] == sent_ids[b_begin]:
b_begin -= 1
# (zihang): `data_len - 1` to account for extend_target
while b_end < data_len - 1 and sent_ids[b_end - 1] == sent_ids[b_end]:
b_end += 1
new_begin = a_end
else:
label = 1
a_end = random.choice(cut_points)
b_begin = a_end
b_end = end_idx
new_begin = b_end
while a_end - a_begin + b_end - b_begin > tot_len:
if a_end - a_begin > b_end - b_begin:
# delete the right side only for the LM objective
a_end -= 1
else:
b_end -= 1
ret = [data[a_begin: a_end], data[b_begin: b_end], label, new_begin]
if extend_target:
if a_end >= data_len or b_end >= data_len:
tf.logging.info("[_split_a_and_b] returns None: "
"a_end {} or b_end {} >= data_len {}".format(
a_end, b_end, data_len))
return None
a_target = data[a_begin + 1: a_end + 1]
b_target = data[b_begin: b_end + 1]
ret.extend([a_target, b_target])
return ret
def _is_start_piece(piece):
special_pieces = set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~'))
if (piece.startswith("▁") or piece.startswith("<")
or piece in special_pieces):
return True
else:
return False
def _sample_mask(sp, seg, reverse=False, max_gram=5, goal_num_predict=None):
"""Sample `goal_num_predict` tokens for partial prediction.
About `mask_beta` tokens are chosen in a context of `mask_alpha` tokens."""
seg_len = len(seg)
mask = np.array([False] * seg_len, dtype=np.bool)
num_predict = 0
ngrams = np.arange(1, max_gram + 1, dtype=np.int64)
pvals = 1. / np.arange(1, max_gram + 1)
pvals /= pvals.sum(keepdims=True)
if reverse:
seg = np.flip(seg, 0)
cur_len = 0
while cur_len < seg_len:
if goal_num_predict is not None and num_predict >= goal_num_predict: break
n = np.random.choice(ngrams, p=pvals)
if goal_num_predict is not None:
n = min(n, goal_num_predict - num_predict)
ctx_size = (n * FLAGS.mask_alpha) // FLAGS.mask_beta
l_ctx = np.random.choice(ctx_size)
r_ctx = ctx_size - l_ctx
# Find the start position of a complete token
beg = cur_len + l_ctx
while beg < seg_len and not _is_start_piece(sp.IdToPiece(seg[beg].item())):
beg += 1
if beg >= seg_len:
break
# Find the end position of the n-gram (start pos of the n+1-th gram)
end = beg + 1
cnt_ngram = 1
while end < seg_len:
if _is_start_piece(sp.IdToPiece(seg[beg].item())):
cnt_ngram += 1
if cnt_ngram > n:
break
end += 1
if end >= seg_len:
break
# Update
mask[beg:end] = True
num_predict += end - beg
cur_len = end + r_ctx
# print(n, sp.DecodeIds(seg[beg:end].tolist()), seg[beg:end].tolist())
while goal_num_predict is not None and num_predict < goal_num_predict:
i = np.random.randint(seg_len)
if not mask[i]:
mask[i] = True
num_predict += 1
if reverse:
mask = np.flip(mask, 0)
return mask
def create_tfrecords(save_dir, basename, data, bsz_per_host, seq_len,
bi_data, sp):
data, sent_ids = data[0], data[1]
num_core = FLAGS.num_core_per_host
bsz_per_core = bsz_per_host // num_core
if bi_data:
assert bsz_per_host % (2 * FLAGS.num_core_per_host) == 0
fwd_data, fwd_sent_ids = batchify(data, bsz_per_host // 2, sent_ids)
fwd_data = fwd_data.reshape(num_core, 1, bsz_per_core // 2, -1)
fwd_sent_ids = fwd_sent_ids.reshape(num_core, 1, bsz_per_core // 2, -1)
bwd_data = fwd_data[:, :, :, ::-1]
bwd_sent_ids = fwd_sent_ids[:, :, :, ::-1]
data = np.concatenate(
[fwd_data, bwd_data], 1).reshape(bsz_per_host, -1)
sent_ids = np.concatenate(
[fwd_sent_ids, bwd_sent_ids], 1).reshape(bsz_per_host, -1)
else:
data, sent_ids = batchify(data, bsz_per_host, sent_ids)
tf.logging.info("Raw data shape {}".format(data.shape))
file_name = format_filename(
prefix=basename,
bsz_per_host=bsz_per_host,
seq_len=seq_len,
bi_data=bi_data,
suffix="tfrecords",
mask_alpha=FLAGS.mask_alpha,
mask_beta=FLAGS.mask_beta,
reuse_len=FLAGS.reuse_len,
uncased=FLAGS.uncased,
fixed_num_predict=FLAGS.num_predict
)
save_path = os.path.join(save_dir, file_name)
record_writer = tf.python_io.TFRecordWriter(save_path)
tf.logging.info("Start writing {}.".format(save_path))
num_batch = 0
reuse_len = FLAGS.reuse_len
# [sep] x 2 + [cls]
assert reuse_len < seq_len - 3
data_len = data.shape[1]
sep_array = np.array([SEP_ID], dtype=np.int64)
cls_array = np.array([CLS_ID], dtype=np.int64)
i = 0
while i + seq_len <= data_len:
if num_batch % 500 == 0:
tf.logging.info("Processing batch {}".format(num_batch))
all_ok = True
features = []
for idx in range(bsz_per_host):
inp = data[idx, i: i + reuse_len]
tgt = data[idx, i + 1: i + reuse_len + 1]
results = _split_a_and_b(
data[idx],
sent_ids[idx],
begin_idx=i + reuse_len,
tot_len=seq_len - reuse_len - 3,
extend_target=True)
if results is None:
tf.logging.info("Break out with seq idx {}".format(i))
all_ok = False
break
# unpack the results
(a_data, b_data, label, _, a_target, b_target) = tuple(results)
# sample ngram spans to predict
reverse = bi_data and (idx // (bsz_per_core // 2)) % 2 == 1
if FLAGS.num_predict is None:
num_predict_0 = num_predict_1 = None
else:
num_predict_1 = FLAGS.num_predict // 2
num_predict_0 = FLAGS.num_predict - num_predict_1
mask_0 = _sample_mask(sp, inp, reverse=reverse,
goal_num_predict=num_predict_0)
mask_1 = _sample_mask(sp, np.concatenate([a_data, sep_array, b_data,
sep_array, cls_array]),
reverse=reverse, goal_num_predict=num_predict_1)
# concatenate data
cat_data = np.concatenate([inp, a_data, sep_array, b_data,
sep_array, cls_array])
seg_id = ([0] * (reuse_len + a_data.shape[0]) + [0] + [1] * b_data.shape[0]
+ [1] + [2])
assert cat_data.shape[0] == seq_len
assert mask_0.shape[0] == seq_len // 2
assert mask_1.shape[0] == seq_len // 2
# the last two CLS's are not used, just for padding purposes
tgt = np.concatenate([tgt, a_target, b_target, cls_array, cls_array])
assert tgt.shape[0] == seq_len
is_masked = np.concatenate([mask_0, mask_1], 0)
if FLAGS.num_predict is not None:
assert np.sum(is_masked) == FLAGS.num_predict
feature = {
"input": _int64_feature(cat_data),
"is_masked": _int64_feature(is_masked),
"target": _int64_feature(tgt),
"seg_id": _int64_feature(seg_id),
"label": _int64_feature([label]),
}
features.append(feature)
if all_ok:
assert len(features) == bsz_per_host
for feature in features:
example = tf.train.Example(features=tf.train.Features(feature=feature))
record_writer.write(example.SerializeToString())
num_batch += 1
else:
break
i += reuse_len
record_writer.close()
tf.logging.info("Done writing {}. batches: {}".format(save_path, num_batch))
return save_path, num_batch
################
# get_input_fn #
################
def _convert_example(example, use_bfloat16):
"""Cast int64 into int32 and float32 to bfloat16 if use_bfloat16."""
for key in list(example.keys()):
val = example[key]
if tf.keras.backend.is_sparse(val):
val = tf.sparse.to_dense(val)
if val.dtype == tf.int64:
val = tf.cast(val, tf.int32)
if use_bfloat16 and val.dtype == tf.float32:
val = tf.cast(val, tf.bfloat16)
example[key] = val
def parse_files_to_dataset(parser, file_names, split, num_batch, num_hosts,
host_id, num_core_per_host, bsz_per_core):
# list of file pathes
num_files = len(file_names)
num_files_per_host = num_files // num_hosts
my_start_file_id = host_id * num_files_per_host
my_end_file_id = (host_id + 1) * num_files_per_host
if host_id == num_hosts - 1:
my_end_file_id = num_files
file_paths = file_names[my_start_file_id: my_end_file_id]
tf.logging.info("Host {} handles {} files".format(host_id, len(file_paths)))
assert split == "train"
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
# file-level shuffle
if len(file_paths) > 1:
dataset = dataset.shuffle(len(file_paths))
# Note: we cannot perform sample-level shuffle here because this will violate
# the consecutive requirement of data stream.
dataset = tf.data.TFRecordDataset(dataset)
# (zihang): since we are doing online preprocessing, the parsed result of
# the same input at each time will be different. Thus, cache processed data
# is not helpful. It will use a lot of memory and lead to contrainer OOM.
# So, change to cache non-parsed raw data instead.
dataset = dataset.cache().map(parser).repeat()
dataset = dataset.batch(bsz_per_core, drop_remainder=True)
dataset = dataset.prefetch(num_core_per_host * bsz_per_core)
return dataset
def _local_perm(inputs, targets, is_masked, perm_size, seq_len):
"""
Sample a permutation of the factorization order, and create an
attention mask accordingly.
Args:
inputs: int64 Tensor in shape [seq_len], input ids.
targets: int64 Tensor in shape [seq_len], target ids.
is_masked: bool Tensor in shape [seq_len]. True means being selected
for partial prediction.
perm_size: the length of longest permutation. Could be set to be reuse_len.
Should not be larger than reuse_len or there will be data leaks.
seq_len: int, sequence length.
"""
# Generate permutation indices
index = tf.range(seq_len, dtype=tf.int64)
index = tf.transpose(tf.reshape(index, [-1, perm_size]))
index = tf.random_shuffle(index)
index = tf.reshape(tf.transpose(index), [-1])
# `perm_mask` and `target_mask`
# non-functional tokens
non_func_tokens = tf.logical_not(tf.logical_or(
tf.equal(inputs, SEP_ID),
tf.equal(inputs, CLS_ID)))
non_mask_tokens = tf.logical_and(tf.logical_not(is_masked), non_func_tokens)
masked_or_func_tokens = tf.logical_not(non_mask_tokens)
# Set the permutation indices of non-masked (& non-funcional) tokens to the
# smallest index (-1):
# (1) they can be seen by all other positions
# (2) they cannot see masked positions, so there won"t be information leak
smallest_index = -tf.ones([seq_len], dtype=tf.int64)
rev_index = tf.where(non_mask_tokens, smallest_index, index)
# Create `target_mask`: non-funcional and maksed tokens
# 1: use mask as input and have loss
# 0: use token (or [SEP], [CLS]) as input and do not have loss
target_tokens = tf.logical_and(masked_or_func_tokens, non_func_tokens)
target_mask = tf.cast(target_tokens, tf.float32)
# Create `perm_mask`
# `target_tokens` cannot see themselves
self_rev_index = tf.where(target_tokens, rev_index, rev_index + 1)
# 1: cannot attend if i <= j and j is not non-masked (masked_or_func_tokens)
# 0: can attend if i > j or j is non-masked
perm_mask = tf.logical_and(
self_rev_index[:, None] <= rev_index[None, :],
masked_or_func_tokens)
perm_mask = tf.cast(perm_mask, tf.float32)
# new target: [next token] for LM and [curr token] (self) for PLM
new_targets = tf.concat([inputs[0: 1], targets[: -1]],
axis=0)
# construct inputs_k
inputs_k = inputs
# construct inputs_q
inputs_q = target_mask
return perm_mask, new_targets, target_mask, inputs_k, inputs_q
def get_dataset(params, num_hosts, num_core_per_host, split, file_names,
num_batch, seq_len, reuse_len, perm_size, mask_alpha,
mask_beta, use_bfloat16=False, num_predict=None):
bsz_per_core = params["batch_size"]
if num_hosts > 1:
host_id = params["context"].current_host
else:
host_id = 0
#### Function used to parse tfrecord
def parser(record):
"""function used to parse tfrecord."""
record_spec = {
"input": tf.FixedLenFeature([seq_len], tf.int64),
"target": tf.FixedLenFeature([seq_len], tf.int64),
"seg_id": tf.FixedLenFeature([seq_len], tf.int64),
"label": tf.FixedLenFeature([1], tf.int64),
"is_masked": tf.FixedLenFeature([seq_len], tf.int64),
}
# retrieve serialized example
example = tf.parse_single_example(
serialized=record,
features=record_spec)
# convert seg_id from 2 to 0
# change the last two tokens to be [SEP] and [CLS]
seg_id = example["seg_id"]
inputs = example["input"]
# segment ids: [ 0, ..., 0, 1, ..., 1, 2]
# input token: [a1, ..., SEP, b1, ..., SEP, CLS]
del example["input"]
target = example.pop("target")
is_masked = tf.cast(example.pop("is_masked"), tf.bool)
non_reuse_len = seq_len - reuse_len
assert perm_size <= reuse_len and perm_size <= non_reuse_len
perm_mask_0, target_0, target_mask_0, input_k_0, input_q_0 = _local_perm(
inputs[:reuse_len],
target[:reuse_len],
is_masked[:reuse_len],
perm_size,
reuse_len)
perm_mask_1, target_1, target_mask_1, input_k_1, input_q_1 = _local_perm(
inputs[reuse_len:],
target[reuse_len:],
is_masked[reuse_len:],
perm_size,
non_reuse_len)
perm_mask_0 = tf.concat([perm_mask_0, tf.ones([reuse_len, non_reuse_len])],
axis=1)
perm_mask_1 = tf.concat([tf.zeros([non_reuse_len, reuse_len]), perm_mask_1],
axis=1)
perm_mask = tf.concat([perm_mask_0, perm_mask_1], axis=0)
target = tf.concat([target_0, target_1], axis=0)
target_mask = tf.concat([target_mask_0, target_mask_1], axis=0)
input_k = tf.concat([input_k_0, input_k_1], axis=0)
input_q = tf.concat([input_q_0, input_q_1], axis=0)
if num_predict is not None:
indices = tf.range(seq_len, dtype=tf.int64)
bool_target_mask = tf.cast(target_mask, tf.bool)
indices = tf.boolean_mask(indices, bool_target_mask)
##### extra padding due to CLS/SEP introduced after prepro
actual_num_predict = tf.shape(indices)[0]
pad_len = num_predict - actual_num_predict
##### target_mapping
target_mapping = tf.one_hot(indices, seq_len, dtype=tf.float32)
paddings = tf.zeros([pad_len, seq_len], dtype=target_mapping.dtype)
target_mapping = tf.concat([target_mapping, paddings], axis=0)
example["target_mapping"] = tf.reshape(target_mapping,
[num_predict, seq_len])
##### target
target = tf.boolean_mask(target, bool_target_mask)
paddings = tf.zeros([pad_len], dtype=target.dtype)
target = tf.concat([target, paddings], axis=0)
example["target"] = tf.reshape(target, [num_predict])
##### target mask
target_mask = tf.concat(
[tf.ones([actual_num_predict], dtype=tf.float32),
tf.zeros([pad_len], dtype=tf.float32)],
axis=0)
example["target_mask"] = tf.reshape(target_mask, [num_predict])
else:
example["target"] = tf.reshape(target, [seq_len])
example["target_mask"] = tf.reshape(target_mask, [seq_len])
# reshape back to fixed shape
example["perm_mask"] = tf.reshape(perm_mask, [seq_len, seq_len])
example["input_k"] = tf.reshape(input_k, [seq_len])
example["input_q"] = tf.reshape(input_q, [seq_len])
_convert_example(example, use_bfloat16)
for k, v in example.items():
tf.logging.info("{}: {}".format(k, v))
return example
# Get dataset
dataset = parse_files_to_dataset(
parser=parser,
file_names=file_names,
split=split,
num_batch=num_batch,
num_hosts=num_hosts,
host_id=host_id,
num_core_per_host=num_core_per_host,
bsz_per_core=bsz_per_core)
return dataset
def get_input_fn(
tfrecord_dir,
split,
bsz_per_host,
seq_len,
reuse_len,
bi_data,
num_hosts=1,
num_core_per_host=1,
perm_size=None,
mask_alpha=None,
mask_beta=None,
uncased=False,
num_passes=None,
use_bfloat16=False,
num_predict=None):
# Merge all record infos into a single one
record_glob_base = format_filename(
prefix="record_info-{}-*".format(split),
bsz_per_host=bsz_per_host,
seq_len=seq_len,
bi_data=bi_data,
suffix="json",
mask_alpha=mask_alpha,
mask_beta=mask_beta,
reuse_len=reuse_len,
uncased=uncased,
fixed_num_predict=num_predict)
record_info = {"num_batch": 0, "filenames": []}
tfrecord_dirs = tfrecord_dir.split(",")
tf.logging.info("Use the following tfrecord dirs: {}".format(tfrecord_dirs))
for idx, record_dir in enumerate(tfrecord_dirs):
record_glob = os.path.join(record_dir, record_glob_base)
tf.logging.info("[{}] Record glob: {}".format(idx, record_glob))
record_paths = sorted(tf.gfile.Glob(record_glob))
tf.logging.info("[{}] Num of record info path: {}".format(
idx, len(record_paths)))
cur_record_info = {"num_batch": 0, "filenames": []}
for record_info_path in record_paths:
if num_passes is not None:
record_info_name = os.path.basename(record_info_path)
fileds = record_info_name.split(".")[0].split("-")
pass_id = int(fileds[-1])
if len(fileds) == 5 and pass_id >= num_passes:
tf.logging.info("Skip pass {}: {}".format(pass_id, record_info_name))
continue
with tf.gfile.Open(record_info_path, "r") as fp:
info = json.load(fp)
if num_passes is not None:
eff_num_passes = min(num_passes, len(info["filenames"]))
ratio = eff_num_passes / len(info["filenames"])
cur_record_info["num_batch"] += int(info["num_batch"] * ratio)
cur_record_info["filenames"] += info["filenames"][:eff_num_passes]
else:
cur_record_info["num_batch"] += info["num_batch"]
cur_record_info["filenames"] += info["filenames"]
# overwrite directory for `cur_record_info`
new_filenames = []
for filename in cur_record_info["filenames"]:
basename = os.path.basename(filename)
new_filename = os.path.join(record_dir, basename)
new_filenames.append(new_filename)
cur_record_info["filenames"] = new_filenames
tf.logging.info("[Dir {}] Number of chosen batches: {}".format(
idx, cur_record_info["num_batch"]))
tf.logging.info("[Dir {}] Number of chosen files: {}".format(
idx, len(cur_record_info["filenames"])))
tf.logging.info(cur_record_info["filenames"])
# add `cur_record_info` to global `record_info`
record_info["num_batch"] += cur_record_info["num_batch"]
record_info["filenames"] += cur_record_info["filenames"]
tf.logging.info("Total number of batches: {}".format(
record_info["num_batch"]))
tf.logging.info("Total number of files: {}".format(
len(record_info["filenames"])))
tf.logging.info(record_info["filenames"])
def input_fn(params):
"""docs."""
assert params["batch_size"] * num_core_per_host == bsz_per_host
dataset = get_dataset(
params=params,
num_hosts=num_hosts,
num_core_per_host=num_core_per_host,
split=split,
file_names=record_info["filenames"],
num_batch=record_info["num_batch"],
seq_len=seq_len,
reuse_len=reuse_len,
perm_size=perm_size,
mask_alpha=mask_alpha,
mask_beta=mask_beta,
use_bfloat16=use_bfloat16,
num_predict=num_predict)
return dataset
return input_fn, record_info
if __name__ == "__main__":
FLAGS = flags.FLAGS
flags.DEFINE_bool("use_tpu", True, help="whether to use TPUs")
flags.DEFINE_integer("bsz_per_host", 16, help="batch size per host.")
flags.DEFINE_integer("num_core_per_host", 8, help="num TPU cores per host.")
flags.DEFINE_integer("seq_len", 512,
help="Sequence length.")
flags.DEFINE_integer("reuse_len", 256,
help="Number of token that can be reused as memory. "
"Could be half of `seq_len`.")
flags.DEFINE_bool("uncased", True, help="Use uncased inputs or not.")
flags.DEFINE_bool("bi_data", True,
help="whether to create bidirectional data")
flags.DEFINE_integer("mask_alpha", default=6,
help="How many tokens to form a group.")
flags.DEFINE_integer("mask_beta", default=1,
help="How many tokens to mask within each group.")
flags.DEFINE_bool("use_eod", True,
help="whether to append EOD at the end of a doc.")
flags.DEFINE_integer("num_predict", default=None,
help="Num of tokens to predict.")
flags.DEFINE_string("input_glob", "data/example/*.txt",
help="Input file glob")
flags.DEFINE_string("sp_path", "", help="Path to the sentence piece model.")
flags.DEFINE_string("save_dir", "proc_data/example",
help="Directory for saving the processed data.")
flags.DEFINE_enum("split", "train", ["train", "dev", "test"],
help="Save the data as which split.")
flags.DEFINE_integer("num_task", 1, help="Number of total tasks.")
flags.DEFINE_integer("task", 0,
help="The Task ID. This value is used when using "
"multiple workers to identify each worker.")
flags.DEFINE_integer("pass_id", 0, help="ID of the current pass."
"Different passes sample different negative segment.")
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(create_data)