forked from MrEliptik/HandPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHandPose.py
237 lines (203 loc) · 7.7 KB
/
HandPose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from utils import detector_utils as detector_utils
from utils import pose_classification_utils as classifier
import cv2
import tensorflow as tf
import multiprocessing
from multiprocessing import Queue, Pool
import time
from utils.detector_utils import WebcamVideoStream
import datetime
import argparse
import os;
os.environ['KERAS_BACKEND'] = 'tensorflow'
import keras
import gui
frame_processed = 0
score_thresh = 0.18
# Create a worker thread that loads graph and
# does detection on images in an input queue and puts it on an output queue
def worker(input_q, output_q, cropped_output_q, inferences_q, cap_params, frame_processed):
print(">> loading frozen model for worker")
detection_graph, sess = detector_utils.load_inference_graph()
sess = tf.Session(graph=detection_graph)
print(">> loading keras model for worker")
try:
model, classification_graph, session = classifier.load_KerasGraph("cnn/models/hand_poses_wGarbage_10.h5")
except Exception as e:
print(e)
while True:
#print("> ===== in worker loop, frame ", frame_processed)
frame = input_q.get()
if (frame is not None):
# Actual detection. Variable boxes contains the bounding box cordinates for hands detected,
# while scores contains the confidence for each of these boxes.
# Hint: If len(boxes) > 1 , you may assume you have found atleast one hand (within your score threshold)
boxes, scores = detector_utils.detect_objects(
frame, detection_graph, sess)
# get region of interest
res = detector_utils.get_box_image(cap_params['num_hands_detect'], cap_params["score_thresh"],
scores, boxes, cap_params['im_width'], cap_params['im_height'], frame)
# draw bounding boxes
detector_utils.draw_box_on_image(cap_params['num_hands_detect'], cap_params["score_thresh"],
scores, boxes, cap_params['im_width'], cap_params['im_height'], frame)
# classify hand pose
if res is not None:
class_res = classifier.classify(model, classification_graph, session, res)
inferences_q.put(class_res)
# add frame annotated with bounding box to queue
cropped_output_q.put(res)
output_q.put(frame)
frame_processed += 1
else:
output_q.put(frame)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-src',
'--source',
dest='video_source',
type=int,
default=0,
help='Device index of the camera.')
parser.add_argument(
'-nhands',
'--num_hands',
dest='num_hands',
type=int,
default=1,
help='Max number of hands to detect.')
parser.add_argument(
'-fps',
'--fps',
dest='fps',
type=int,
default=1,
help='Show FPS on detection/display visualization')
parser.add_argument(
'-wd',
'--width',
dest='width',
type=int,
default=300,
help='Width of the frames in the video stream.')
parser.add_argument(
'-ht',
'--height',
dest='height',
type=int,
default=200,
help='Height of the frames in the video stream.')
parser.add_argument(
'-ds',
'--display',
dest='display',
type=int,
default=1,
help='Display the detected images using OpenCV. This reduces FPS')
parser.add_argument(
'-num-w',
'--num-workers',
dest='num_workers',
type=int,
default=4,
help='Number of workers.')
parser.add_argument(
'-q-size',
'--queue-size',
dest='queue_size',
type=int,
default=5,
help='Size of the queue.')
args = parser.parse_args()
input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
cropped_output_q = Queue(maxsize=args.queue_size)
inferences_q = Queue(maxsize=args.queue_size)
video_capture = WebcamVideoStream(
src=args.video_source, width=args.width, height=args.height).start()
cap_params = {}
frame_processed = 0
cap_params['im_width'], cap_params['im_height'] = video_capture.size()
print(cap_params['im_width'], cap_params['im_height'])
cap_params['score_thresh'] = score_thresh
# max number of hands we want to detect/track
cap_params['num_hands_detect'] = args.num_hands
print(cap_params, args)
# Count number of files to increment new example directory
poses = []
_file = open("poses.txt", "r")
lines = _file.readlines()
for line in lines:
line = line.strip()
if(line != ""):
print(line)
poses.append(line)
# spin up workers to paralleize detection.
pool = Pool(args.num_workers, worker,
(input_q, output_q, cropped_output_q, inferences_q, cap_params, frame_processed))
start_time = datetime.datetime.now()
num_frames = 0
fps = 0
index = 0
cv2.namedWindow('Handpose', cv2.WINDOW_NORMAL)
while True:
frame = video_capture.read()
frame = cv2.flip(frame, 1)
index += 1
input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output_frame = output_q.get()
cropped_output = cropped_output_q.get()
inferences = None
try:
inferences = inferences_q.get_nowait()
except Exception as e:
pass
elapsed_time = (datetime.datetime.now() - start_time).total_seconds()
num_frames += 1
fps = num_frames / elapsed_time
# Display inferences
if(inferences is not None):
gui.drawInferences(inferences, poses)
if (cropped_output is not None):
cropped_output = cv2.cvtColor(cropped_output, cv2.COLOR_RGB2BGR)
if (args.display > 0):
cv2.namedWindow('Cropped', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Cropped', 450, 300)
cv2.imshow('Cropped', cropped_output)
#cv2.imwrite('image_' + str(num_frames) + '.png', cropped_output)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
if (num_frames == 400):
num_frames = 0
start_time = datetime.datetime.now()
else:
print("frames processed: ", index, "elapsed time: ",
elapsed_time, "fps: ", str(int(fps)))
# print("frame ", index, num_frames, elapsed_time, fps)
if (output_frame is not None):
output_frame = cv2.cvtColor(output_frame, cv2.COLOR_RGB2BGR)
if (args.display > 0):
if (args.fps > 0):
detector_utils.draw_fps_on_image("FPS : " + str(int(fps)),
output_frame)
cv2.imshow('Handpose', output_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
if (num_frames == 400):
num_frames = 0
start_time = datetime.datetime.now()
else:
print("frames processed: ", index, "elapsed time: ",
elapsed_time, "fps: ", str(int(fps)))
else:
print("video end")
break
elapsed_time = (datetime.datetime.now() - start_time).total_seconds()
fps = num_frames / elapsed_time
print("fps", fps)
pool.terminate()
video_capture.stop()
cv2.destroyAllWindows()