Official Pytorch implementations of PSENet [1].
[1] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao. Shape robust text detection with progressive scale expansion network. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 9336–9345, 2019.
Python 3.6+
Pytorch 1.1.0
torchvision 0.3
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython
pip install -r requirement.txt
./compile.sh
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}
For example:
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/psenet/psenet_r50_ic15_736.py
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
For example:
python test.py config/psenet/psenet_r50_ic15_736.py checkpoints/psenet_r50_ic15_736/checkpoint.pth.tar
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed
For example:
python test.py config/psenet/psenet_r50_ic15_736.py checkpoints/psenet_r50_ic15_736/checkpoint.pth.tar --report_speed
The evaluation scripts of ICDAR 2015 (IC15), Total-Text (TT) and CTW1500 (CTW) datasets.
Text detection
./eval_ic15.sh
Text detection
./eval_tt.sh
Text detection
./eval_ctw.sh
Method | Backbone | Config | Short_Size | Precision (%) | Recall (%) | F-measure (%) |
---|---|---|---|---|---|---|
PSENet | ResNet50 | psenet_r50_ic15_736.py | 736 | 83.6 | 74.0 | 78.5 |
PSENet | ResNet50 | psenet_r50_ic15_1280.py | 1024 | 83.4 | 75.5 | 79.3 |
@inproceedings{wang2019shape,
title={Shape robust text detection with progressive scale expansion network},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9336--9345},
year={2019}
}
This project is released under the Apache 2.0 license.