forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spmmUtils.cc
327 lines (313 loc) · 9.57 KB
/
spmmUtils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <iostream>
#include <cstring>
#include <cassert>
#include "fbgemm/spmmUtils.h"
using namespace std;
namespace fbgemm {
void sparseDenseMMRef(
int M,
int N,
const int* row_ptr,
const int* col_idx,
const float* values,
const float* B,
int ldb,
float* C,
int ldc,
bool accum) {
// Calcualtes accum ? C += A * B : C = A * B
// size of values is equal to number of non-zeros (nnzs)
// size of row_ptr is equal to M + 1
// size of col_idx is equal to nnzs
for (int i = 0; i < M; ++i) {
if (!accum) {
for (int j = 0; j < N; ++j) {
C[i * ldc + j] = 0;
}
}
for (int r = row_ptr[i]; r < row_ptr[i + 1]; ++r) {
int acbr = col_idx[r];
float v = values[r];
for (int j = 0; j < N; ++j) {
C[i * ldc + j] += v * B[acbr * ldb + j];
}
}
}
}
template <bool FUSE_RELU, QuantizationGranularity Q_GRAN>
FBGEMM_API void trRequantizeRef(
uint8_t* out,
const int32_t* inp,
const block_type_t& block,
int ld_out,
int ld_in,
const trRequantizationParams_t& r) {
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
for (int j = block.col_start; j < block.col_start + block.col_size; ++j) {
int32_t raw = inp[(i - block.row_start) * ld_in + (j - block.col_start)];
if (r.act_zero_point) {
raw -= r.act_zero_point * r.weight_row_offsets[i];
}
int weight_zeropoint_idx;
if (Q_GRAN == QuantizationGranularity::TENSOR) {
weight_zeropoint_idx = 0;
} else {
// Q_GRAN == QuantizationGranularity::OUT_CHANNEL
weight_zeropoint_idx = i;
}
if (r.act_col_offsets) {
raw -= r.act_col_offsets[j - block.col_start] *
r.weight_zero_points[weight_zeropoint_idx];
}
float raw_f = raw;
if (r.bias) {
raw_f += r.bias[i] / r.act_times_w_scale[weight_zeropoint_idx];
}
float ab = raw_f * r.act_times_w_scale[weight_zeropoint_idx] / r.C_scale;
int rounded = std::rintf(ab) + r.C_zero_point;
out[i * ld_out + j] = std::max(
FUSE_RELU ? static_cast<int>(r.C_zero_point) : 0,
std::min(255, rounded));
}
}
}
#define CREATE_INSTANCE(FUSE_RELU, QGRAN) \
template FBGEMM_API void trRequantizeRef<FUSE_RELU, QGRAN>( \
uint8_t * out, \
const int32_t* inp, \
const block_type_t& block, \
int ld_out, \
int ld_in, \
const trRequantizationParams_t& r);
CREATE_INSTANCE(true, QuantizationGranularity::TENSOR)
CREATE_INSTANCE(true, QuantizationGranularity::OUT_CHANNEL)
CREATE_INSTANCE(false, QuantizationGranularity::TENSOR)
CREATE_INSTANCE(false, QuantizationGranularity::OUT_CHANNEL)
#undef CREATE_INSTANCE
vector<vector<int>> getSparseMatrixShapes() {
// clang-format off
// {M, N, K}
vector<vector<int>> shapes = {
{1,128,160},
{1,16,128},
{1,256,160},
{168,15,197},
{168,8,197},
{176,15,197},
{176,8,197},
{21,1,1027},
{21,120,512},
{21,125,300},
{21,128,120},
{21,128,176},
{21,16,128},
{21,256,5018},
{21,256,512},
{21,2955,512},
{21,5018,256},
{21,512,128},
{21,512,2125},
{21,512,256},
{21,512,3851},
{21,512,4085},
{21,8,512},
{22,1,1027},
{22,120,512},
{22,125,300},
{22,128,120},
{22,128,176},
{22,16,128},
{22,256,5018},
{22,256,512},
{22,2955,512},
{22,5018,256},
{22,512,128},
{22,512,2125},
{22,512,256},
{22,512,3851},
{22,512,4085},
{22,8,512},
{128,128,128},
{256,256,256},
{512,512,512},
};
// RoBERTa shapes
const char* include_roberta = std::getenv("INCLUDE_ROBERTA");
if(include_roberta && (strcmp(include_roberta, "1") == 0)) {
vector<vector<int>> roberta_shapes = {
// average input length = 25
{25, 2304, 768},
{25, 768, 768},
{25, 3072, 768},
{25, 768, 3072},
{25, 3072, 1024},
{25, 1024, 1024},
{25, 4096, 1024},
{25, 1024, 4096},
// high input length = 51
{51, 2304, 768},
{51, 768, 768},
{51, 3072, 768},
{51, 768, 3072},
{51, 3072, 1024},
{51, 1024, 1024},
{51, 4096, 1024},
{51, 1024, 4096},
};
shapes.insert(shapes.end(), roberta_shapes.begin(), roberta_shapes.end() );
cout << "RoBERTa shapes included." << endl;
}
else {
cout << "RoBERTa shapes not included. " <<
"To include, add \"INCLUDE_ROBERTA=1\" as an env variable." << endl;
}
// LSTM shapes
const char* include_lstm = std::getenv("INCLUDE_LSTM");
if(include_lstm && (strcmp(include_lstm, "1") == 0)) {
vector<vector<int>> lstm_shapes = {
{ 1, 2560, 640},
{16, 2560, 640},
{18, 2560, 640},
{ 1, 2560, 720},
{16, 2560, 720},
{18, 2560, 720},
};
shapes.insert(shapes.end(), lstm_shapes.begin(), lstm_shapes.end() );
cout << "LSTM shapes included." << endl;
}
else {
cout << "LSTM shapes not included. " <<
"To include, add \"INCLUDE_LSTM=1\" as an env variable." << endl;
}
// RNNT shapes
const char* include_rnnt = std::getenv("INCLUDE_RNNT");
if(include_rnnt && (strcmp(include_rnnt, "1") == 0)) {
vector<vector<int>> rnnt_shapes = {
{1, 4096, 640},
{1, 640, 1024},
{5, 4096, 640},
{20, 4096, 640},
{4, 4096, 1024},
{3, 4096, 1024},
{1, 4096, 1024},
{2, 4096, 1024},
{5, 1024, 640},
{5, 4096, 1280},
{20, 4096, 880},
{10, 4096, 640},
{10, 4096, 1280},
{5, 4096, 1024},
{1, 1024, 640},
{6, 4096, 1024},
{1, 640, 256},
{1, 1024, 256},
{7, 4096, 1024},
{8, 4096, 1024},
{9, 4096, 1024},
{7, 4096, 640},
{4, 4096, 640},
{28, 4096, 640},
{16, 4096, 640},
{10, 4096, 1024},
{8, 4096, 640},
{8, 4096, 1280},
{7, 1024, 640},
{7, 4096, 1280},
{4, 1024, 640},
{4, 4096, 1280},
{28, 4096, 880},
{16, 4096, 880},
{14, 4096, 640},
{14, 4096, 1280},
{1, 256, 5000},
{2, 256, 4500},
{64, 256, 4500},
};
shapes.insert(shapes.end(), rnnt_shapes.begin(), rnnt_shapes.end() );
cout << "rnnt shapes included." << endl;
}
else {
cout << "RNNT shapes not included. " <<
"To include, add \"INCLUDE_RNNT=1\" as an env variable." << endl;
}
// clang-format on
return shapes;
}
template <bool FUSE_RELU, QuantizationGranularity Q_GRAN>
void sparseDenseInt8MMRef(
int N,
const std::unique_ptr<BCSRMatrix<>>& bcsr,
const uint8_t* B,
int ldb,
int32_t* C_i32,
uint8_t* C_i8,
int ldc,
trRequantizationParams_t& rParams,
bool accum,
int /*thread_id*/,
int /*num_threads*/) {
// Calcualtes accum ? C += A * B : C = A * B
constexpr int rowBlockSize = BCSRMatrix<>::RB;
constexpr int colBlockSize = BCSRMatrix<>::CB;
constexpr int colTileSize = BCSRMatrix<>::COLTILE;
int M = bcsr->R;
int K = bcsr->C;
int kTiles = (K + colTileSize - 1) / colTileSize;
assert(
M % rowBlockSize == 0 &&
"Number of rows is not a multiple of rowBlockSize size");
for (int j = 0; j < N; ++j) {
for (int kt = 0; kt < kTiles; ++kt) {
int* rowBPtr_start = bcsr->rowBPtr.data() + kt * M;
for (int i = 0; i < M / rowBlockSize; i += rowBlockSize) {
// only initialize to 0 for the first ktile
if (!accum && !kt) {
C_i32[i * ldc + j] = 0;
}
for (int r = rowBPtr_start[i]; r < rowBPtr_start[i + 1]; ++r) {
int acbr_block = bcsr->colBIdx[r];
const int8_t* blockValues =
bcsr->values.data() + r * rowBlockSize * colBlockSize;
for (int i_b = 0; i_b < rowBlockSize; ++i_b) {
for (int k_b = 0; k_b < colBlockSize; ++k_b) {
C_i32[(i * rowBlockSize + i_b) * ldc + j] +=
static_cast<int32_t>(blockValues[i_b * colBlockSize + k_b]) *
static_cast<int32_t>(
B[(acbr_block * colBlockSize + k_b + kt * colTileSize) *
ldb +
j]);
}
}
}
}
}
}
block_type_t block{0, M, 0, N};
trRequantizeRef<FUSE_RELU, Q_GRAN>(C_i8, C_i32, block, ldc, ldc, rParams);
}
#define CREATE_INSTANCE(FUSE_RELU, QGRAN) \
template void sparseDenseInt8MMRef<FUSE_RELU, QGRAN>( \
int N, \
const std::unique_ptr<BCSRMatrix<>>& bcsr, \
const uint8_t* B, \
int ldb, \
int32_t* C_i32, \
uint8_t* C_u8, \
int ldc, \
trRequantizationParams_t& rParams, \
bool accum, \
int thread_id, \
int num_threads);
CREATE_INSTANCE(true, QuantizationGranularity::TENSOR)
CREATE_INSTANCE(true, QuantizationGranularity::OUT_CHANNEL)
CREATE_INSTANCE(false, QuantizationGranularity::TENSOR)
CREATE_INSTANCE(false, QuantizationGranularity::OUT_CHANNEL)
#undef CREATE_INSTANCE
} // namespace fbgemm