forked from LeelaChessZero/lc0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetwork_check.cc
387 lines (326 loc) · 11.9 KB
/
network_check.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
This file is part of Leela Chess Zero.
Copyright (C) 2018-2020 The LCZero Authors
Leela Chess is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Leela Chess is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Leela Chess. If not, see <http://www.gnu.org/licenses/>.
Additional permission under GNU GPL version 3 section 7
If you modify this Program, or any covered work, by linking or
combining it with NVIDIA Corporation's libraries from the NVIDIA CUDA
Toolkit and the NVIDIA CUDA Deep Neural Network library (or a
modified version of those libraries), containing parts covered by the
terms of the respective license agreement, the licensors of this
Program grant you additional permission to convey the resulting work.
*/
#include <algorithm>
#include <cmath>
#include <iomanip>
#include "neural/decoder.h"
#include "neural/factory.h"
#include "neural/network.h"
#include "utils/histogram.h"
#include "utils/logging.h"
#include "utils/random.h"
namespace lczero {
namespace {
class CheckNetwork;
enum CheckMode {
kCheckOnly,
kErrorDisplay,
kHistogram,
};
struct CheckParams {
CheckMode mode;
double absolute_tolerance;
double relative_tolerance;
pblczero::NetworkFormat::InputFormat input_format;
};
class CheckComputation : public NetworkComputation {
public:
CheckComputation(const CheckParams& params,
std::unique_ptr<NetworkComputation> work_comp,
std::unique_ptr<NetworkComputation> check_comp)
: params_(params),
work_comp_(std::move(work_comp)),
check_comp_(std::move(check_comp)) {}
void AddInput(InputPlanes&& input) override {
InputPlanes x = input;
InputPlanes y = input;
work_comp_->AddInput(std::move(x));
check_comp_->AddInput(std::move(y));
ChessBoard board;
int rule50;
int gameply;
PopulateBoard(params_.input_format, input, &board, &rule50, &gameply);
moves_.emplace_back(board.GenerateLegalMoves());
}
void ComputeBlocking() override {
work_comp_->ComputeBlocking();
check_comp_->ComputeBlocking();
switch (params_.mode) {
case kCheckOnly:
CheckOnly();
break;
case kErrorDisplay:
DisplayError();
break;
case kHistogram:
DisplayHistogram();
break;
}
}
int GetBatchSize() const override {
return static_cast<int>(work_comp_->GetBatchSize());
}
float GetQVal(int sample) const override {
return work_comp_->GetQVal(sample);
}
float GetDVal(int sample) const override {
return work_comp_->GetDVal(sample);
}
float GetMVal(int sample) const override {
return work_comp_->GetMVal(sample);
}
float GetPVal(int sample, int move_id) const override {
return work_comp_->GetPVal(sample, move_id);
}
private:
const CheckParams& params_;
std::vector<MoveList> moves_;
std::vector<float> PolicySoftMax(const NetworkComputation* comp, int sample,
const std::vector<Move>& moves) const {
float max_p = -std::numeric_limits<float>::infinity();
std::vector<float> policy;
policy.reserve(moves.size());
for (const auto move : moves) {
policy.emplace_back(comp->GetPVal(sample, move.as_nn_index(0)));
max_p = std::max(max_p, policy.back());
}
float total = 0;
for (auto& p : policy) {
p = std::exp(p - max_p);
total += p;
}
if (total > 0) {
for (auto& p : policy) {
p /= total;
}
}
return policy;
}
void CheckOnly() const {
bool valueAlmostEqual = true;
const int size = GetBatchSize();
for (int i = 0; i < size && valueAlmostEqual; i++) {
const float v1 = work_comp_->GetQVal(i);
const float v2 = check_comp_->GetQVal(i);
valueAlmostEqual &= IsAlmostEqual(v1, v2);
}
bool policyAlmostEqual = true;
for (int i = 0; i < size && policyAlmostEqual; i++) {
const auto work = PolicySoftMax(work_comp_.get(), i, moves_[i]);
const auto check = PolicySoftMax(check_comp_.get(), i, moves_[i]);
for (size_t j = 0; j < work.size(); j++) {
policyAlmostEqual &= IsAlmostEqual(work[j], check[j]);
}
}
if (valueAlmostEqual && policyAlmostEqual) {
CERR << "Check passed for a batch of " << size << ".";
return;
}
if (!valueAlmostEqual && !policyAlmostEqual) {
CERR << "*** ERROR check failed for a batch of " << size
<< " both value and policy incorrect.";
return;
}
if (!valueAlmostEqual) {
CERR << "*** ERROR check failed for a batch of " << size
<< " value incorrect (but policy ok).";
return;
}
CERR << "*** ERROR check failed for a batch of " << size
<< " policy incorrect (but value ok).";
}
bool IsAlmostEqual(double a, double b) const {
return std::abs(a - b) <= std::max(params_.relative_tolerance *
std::max(std::abs(a), std::abs(b)),
params_.absolute_tolerance);
}
void DisplayHistogram() {
Histogram histogram(-15, 1, 5);
const int size = GetBatchSize();
for (int i = 0; i < size; i++) {
const float qv1 = work_comp_->GetQVal(i);
const float qv2 = check_comp_->GetQVal(i);
histogram.Add(qv2 - qv1);
const auto work = PolicySoftMax(work_comp_.get(), i, moves_[i]);
const auto check = PolicySoftMax(check_comp_.get(), i, moves_[i]);
for (size_t j = 0; j < work.size(); j++) {
histogram.Add(check[j] - work[j]);
}
}
CERR << "Absolute error histogram for a batch of " << size;
histogram.Dump();
}
// Compute maximum absolute/relative errors.
struct MaximumError {
double max_absolute_error = 0;
double max_relative_error = 0;
void Add(double a, double b) {
const double absolute_error = GetAbsoluteError(a, b);
if (absolute_error > max_absolute_error) {
max_absolute_error = absolute_error;
}
const double relative_error = GetRelativeError(a, b);
if (relative_error > max_relative_error) {
max_relative_error = relative_error;
}
}
void Dump(const char* name) {
CERR << std::scientific << std::setprecision(1) << name
<< ": absolute: " << max_absolute_error
<< ", relative: " << max_relative_error << ".";
}
static double GetRelativeError(double a, double b) {
const double max = std::max(std::abs(a), std::abs(b));
return max == 0 ? 0 : std::abs(a - b) / max;
}
static double GetAbsoluteError(double a, double b) {
return std::abs(a - b);
}
};
void DisplayError() {
MaximumError value_error;
const int size = GetBatchSize();
for (int i = 0; i < size; i++) {
const float v1 = work_comp_->GetQVal(i);
const float v2 = check_comp_->GetQVal(i);
value_error.Add(v1, v2);
}
MaximumError policy_error;
for (int i = 0; i < size; i++) {
const auto work = PolicySoftMax(work_comp_.get(), i, moves_[i]);
const auto check = PolicySoftMax(check_comp_.get(), i, moves_[i]);
for (size_t j = 0; j < work.size(); j++) {
policy_error.Add(work[j], check[j]);
}
}
CERR << "maximum error for a batch of " << size << ":";
value_error.Dump(" value");
policy_error.Dump(" policy");
}
std::unique_ptr<NetworkComputation> work_comp_;
std::unique_ptr<NetworkComputation> check_comp_;
};
class CheckNetwork : public Network {
public:
static constexpr CheckMode kDefaultMode = kCheckOnly;
static constexpr double kDefaultCheckFrequency = 0.2;
static constexpr double kDefaultAbsoluteTolerance = 1e-5;
static constexpr double kDefaultRelativeTolerance = 1e-4;
CheckNetwork(const std::optional<WeightsFile>& weights,
const OptionsDict& options) {
params_.mode = kDefaultMode;
params_.absolute_tolerance = kDefaultAbsoluteTolerance;
params_.relative_tolerance = kDefaultRelativeTolerance;
check_frequency_ = kDefaultCheckFrequency;
OptionsDict dict1;
std::string backendName1 = "opencl";
OptionsDict& backend1_dict = dict1;
OptionsDict dict2;
std::string backendName2 = "eigen";
OptionsDict& backend2_dict = dict2;
const std::string mode = options.GetOrDefault<std::string>("mode", "check");
if (mode == "check") {
params_.mode = kCheckOnly;
} else if (mode == "histo") {
params_.mode = kHistogram;
} else if (mode == "display") {
params_.mode = kErrorDisplay;
}
params_.absolute_tolerance =
options.GetOrDefault<float>("atol", kDefaultAbsoluteTolerance);
params_.relative_tolerance =
options.GetOrDefault<float>("rtol", kDefaultRelativeTolerance);
const auto parents = options.ListSubdicts();
if (parents.size() > 0) {
backendName1 = parents[0];
backend1_dict = options.GetSubdict(backendName1);
backendName1 =
backend1_dict.GetOrDefault<std::string>("backend", backendName1);
}
if (parents.size() > 1) {
backendName2 = parents[1];
backend2_dict = options.GetSubdict(backendName2);
backendName2 =
backend2_dict.GetOrDefault<std::string>("backend", backendName2);
}
if (parents.size() > 2) {
CERR << "Warning, cannot check more than two backends";
}
CERR << "Working backend set to " << backendName1 << ".";
CERR << "Reference backend set to " << backendName2 << ".";
work_net_ =
NetworkFactory::Get()->Create(backendName1, weights, backend1_dict);
check_net_ =
NetworkFactory::Get()->Create(backendName2, weights, backend2_dict);
capabilities_ = work_net_->GetCapabilities();
capabilities_.Merge(check_net_->GetCapabilities());
params_.input_format = capabilities_.input_format;
check_frequency_ =
options.GetOrDefault<float>("freq", kDefaultCheckFrequency);
switch (params_.mode) {
case kCheckOnly:
CERR << std::scientific << std::setprecision(1)
<< "Check mode: check only with relative tolerance "
<< params_.relative_tolerance << ", absolute tolerance "
<< params_.absolute_tolerance << ".";
break;
case kErrorDisplay:
CERR << "Check mode: error display.";
break;
case kHistogram:
CERR << "Check mode: histogram.";
break;
}
CERR << "Check rate: " << std::fixed << std::setprecision(0)
<< 100 * check_frequency_ << "%.";
}
std::unique_ptr<NetworkComputation> NewComputation() override {
const double draw = Random::Get().GetDouble(1.0);
const bool check = draw < check_frequency_;
if (check) {
std::unique_ptr<NetworkComputation> work_comp =
work_net_->NewComputation();
std::unique_ptr<NetworkComputation> check_comp =
check_net_->NewComputation();
return std::make_unique<CheckComputation>(params_, std::move(work_comp),
std::move(check_comp));
}
return work_net_->NewComputation();
}
const NetworkCapabilities& GetCapabilities() const override {
return capabilities_;
}
private:
CheckParams params_;
// How frequently an iteration is checked (0: never, 1: always).
double check_frequency_;
std::unique_ptr<Network> work_net_;
std::unique_ptr<Network> check_net_;
NetworkCapabilities capabilities_;
};
std::unique_ptr<Network> MakeCheckNetwork(
const std::optional<WeightsFile>& weights, const OptionsDict& options) {
return std::make_unique<CheckNetwork>(weights, options);
}
REGISTER_NETWORK("check", MakeCheckNetwork, -800)
} // namespace
} // namespace lczero