forked from openvswitch/ovs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin-band.c
812 lines (716 loc) · 28.9 KB
/
in-band.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/*
* Copyright (c) 2008, 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "in-band.h"
#include <arpa/inet.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/socket.h>
#include <net/if.h>
#include <string.h>
#include <stdlib.h>
#include "classifier.h"
#include "dhcp.h"
#include "dpif.h"
#include "flow.h"
#include "netdev.h"
#include "odp-util.h"
#include "ofproto.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "poll-loop.h"
#include "status.h"
#include "timeval.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(in_band);
/* In-band control allows a single network to be used for OpenFlow
* traffic and other data traffic. Refer to ovs-vswitchd.conf(5) and
* secchan(8) for a description of configuring in-band control.
*
* This comment is an attempt to describe how in-band control works at a
* wire- and implementation-level. Correctly implementing in-band
* control has proven difficult due to its many subtleties, and has thus
* gone through many iterations. Please read through and understand the
* reasoning behind the chosen rules before making modifications.
*
* In Open vSwitch, in-band control is implemented as "hidden" flows (in that
* they are not visible through OpenFlow) and at a higher priority than
* wildcarded flows can be set up by through OpenFlow. This is done so that
* the OpenFlow controller cannot interfere with them and possibly break
* connectivity with its switches. It is possible to see all flows, including
* in-band ones, with the ovs-appctl "bridge/dump-flows" command.
*
* The Open vSwitch implementation of in-band control can hide traffic to
* arbitrary "remotes", where each remote is one TCP port on one IP address.
* Currently the remotes are automatically configured as the in-band OpenFlow
* controllers plus the OVSDB managers, if any. (The latter is a requirement
* because OVSDB managers are responsible for configuring OpenFlow controllers,
* so if the manager cannot be reached then OpenFlow cannot be reconfigured.)
*
* The following rules (with the OFPP_NORMAL action) are set up on any bridge
* that has any remotes:
*
* (a) DHCP requests sent from the local port.
* (b) ARP replies to the local port's MAC address.
* (c) ARP requests from the local port's MAC address.
*
* In-band also sets up the following rules for each unique next-hop MAC
* address for the remotes' IPs (the "next hop" is either the remote
* itself, if it is on a local subnet, or the gateway to reach the remote):
*
* (d) ARP replies to the next hop's MAC address.
* (e) ARP requests from the next hop's MAC address.
*
* In-band also sets up the following rules for each unique remote IP address:
*
* (f) ARP replies containing the remote's IP address as a target.
* (g) ARP requests containing the remote's IP address as a source.
*
* In-band also sets up the following rules for each unique remote (IP,port)
* pair:
*
* (h) TCP traffic to the remote's IP and port.
* (i) TCP traffic from the remote's IP and port.
*
* The goal of these rules is to be as narrow as possible to allow a
* switch to join a network and be able to communicate with the
* remotes. As mentioned earlier, these rules have higher priority
* than the controller's rules, so if they are too broad, they may
* prevent the controller from implementing its policy. As such,
* in-band actively monitors some aspects of flow and packet processing
* so that the rules can be made more precise.
*
* In-band control monitors attempts to add flows into the datapath that
* could interfere with its duties. The datapath only allows exact
* match entries, so in-band control is able to be very precise about
* the flows it prevents. Flows that miss in the datapath are sent to
* userspace to be processed, so preventing these flows from being
* cached in the "fast path" does not affect correctness. The only type
* of flow that is currently prevented is one that would prevent DHCP
* replies from being seen by the local port. For example, a rule that
* forwarded all DHCP traffic to the controller would not be allowed,
* but one that forwarded to all ports (including the local port) would.
*
* As mentioned earlier, packets that miss in the datapath are sent to
* the userspace for processing. The userspace has its own flow table,
* the "classifier", so in-band checks whether any special processing
* is needed before the classifier is consulted. If a packet is a DHCP
* response to a request from the local port, the packet is forwarded to
* the local port, regardless of the flow table. Note that this requires
* L7 processing of DHCP replies to determine whether the 'chaddr' field
* matches the MAC address of the local port.
*
* It is interesting to note that for an L3-based in-band control
* mechanism, the majority of rules are devoted to ARP traffic. At first
* glance, some of these rules appear redundant. However, each serves an
* important role. First, in order to determine the MAC address of the
* remote side (controller or gateway) for other ARP rules, we must allow
* ARP traffic for our local port with rules (b) and (c). If we are
* between a switch and its connection to the remote, we have to
* allow the other switch's ARP traffic to through. This is done with
* rules (d) and (e), since we do not know the addresses of the other
* switches a priori, but do know the remote's or gateway's. Finally,
* if the remote is running in a local guest VM that is not reached
* through the local port, the switch that is connected to the VM must
* allow ARP traffic based on the remote's IP address, since it will
* not know the MAC address of the local port that is sending the traffic
* or the MAC address of the remote in the guest VM.
*
* With a few notable exceptions below, in-band should work in most
* network setups. The following are considered "supported' in the
* current implementation:
*
* - Locally Connected. The switch and remote are on the same
* subnet. This uses rules (a), (b), (c), (h), and (i).
*
* - Reached through Gateway. The switch and remote are on
* different subnets and must go through a gateway. This uses
* rules (a), (b), (c), (h), and (i).
*
* - Between Switch and Remote. This switch is between another
* switch and the remote, and we want to allow the other
* switch's traffic through. This uses rules (d), (e), (h), and
* (i). It uses (b) and (c) indirectly in order to know the MAC
* address for rules (d) and (e). Note that DHCP for the other
* switch will not work unless an OpenFlow controller explicitly lets this
* switch pass the traffic.
*
* - Between Switch and Gateway. This switch is between another
* switch and the gateway, and we want to allow the other switch's
* traffic through. This uses the same rules and logic as the
* "Between Switch and Remote" configuration described earlier.
*
* - Remote on Local VM. The remote is a guest VM on the
* system running in-band control. This uses rules (a), (b), (c),
* (h), and (i).
*
* - Remote on Local VM with Different Networks. The remote
* is a guest VM on the system running in-band control, but the
* local port is not used to connect to the remote. For
* example, an IP address is configured on eth0 of the switch. The
* remote's VM is connected through eth1 of the switch, but an
* IP address has not been configured for that port on the switch.
* As such, the switch will use eth0 to connect to the remote,
* and eth1's rules about the local port will not work. In the
* example, the switch attached to eth0 would use rules (a), (b),
* (c), (h), and (i) on eth0. The switch attached to eth1 would use
* rules (f), (g), (h), and (i).
*
* The following are explicitly *not* supported by in-band control:
*
* - Specify Remote by Name. Currently, the remote must be
* identified by IP address. A naive approach would be to permit
* all DNS traffic. Unfortunately, this would prevent the
* controller from defining any policy over DNS. Since switches
* that are located behind us need to connect to the remote,
* in-band cannot simply add a rule that allows DNS traffic from
* the local port. The "correct" way to support this is to parse
* DNS requests to allow all traffic related to a request for the
* remote's name through. Due to the potential security
* problems and amount of processing, we decided to hold off for
* the time-being.
*
* - Differing Remotes for Switches. All switches must know
* the L3 addresses for all the remotes that other switches
* may use, since rules need to be set up to allow traffic related
* to those remotes through. See rules (f), (g), (h), and (i).
*
* - Differing Routes for Switches. In order for the switch to
* allow other switches to connect to a remote through a
* gateway, it allows the gateway's traffic through with rules (d)
* and (e). If the routes to the remote differ for the two
* switches, we will not know the MAC address of the alternate
* gateway.
*/
/* Priorities used in classifier for in-band rules. These values are higher
* than any that may be set with OpenFlow, and "18" kind of looks like "IB".
* The ordering of priorities is not important because all of the rules set up
* by in-band control have the same action. The only reason to use more than
* one priority is to make the kind of flow easier to see during debugging. */
enum {
/* One set per bridge. */
IBR_FROM_LOCAL_DHCP = 180000, /* (a) From local port, DHCP. */
IBR_TO_LOCAL_ARP, /* (b) To local port, ARP. */
IBR_FROM_LOCAL_ARP, /* (c) From local port, ARP. */
/* One set per unique next-hop MAC. */
IBR_TO_NEXT_HOP_ARP, /* (d) To remote MAC, ARP. */
IBR_FROM_NEXT_HOP_ARP, /* (e) From remote MAC, ARP. */
/* One set per unique remote IP address. */
IBR_TO_REMOTE_ARP, /* (f) To remote IP, ARP. */
IBR_FROM_REMOTE_ARP, /* (g) From remote IP, ARP. */
/* One set per unique remote (IP,port) pair. */
IBR_TO_REMOTE_TCP, /* (h) To remote IP, TCP port. */
IBR_FROM_REMOTE_TCP /* (i) From remote IP, TCP port. */
};
/* Track one remote IP and next hop information. */
struct in_band_remote {
struct sockaddr_in remote_addr; /* IP address, in network byte order. */
uint8_t remote_mac[ETH_ADDR_LEN]; /* Next-hop MAC, all-zeros if unknown. */
uint8_t last_remote_mac[ETH_ADDR_LEN]; /* Previous nonzero next-hop MAC. */
struct netdev *remote_netdev; /* Device to send to next-hop MAC. */
};
struct in_band {
struct ofproto *ofproto;
struct status_category *ss_cat;
int queue_id, prev_queue_id;
/* Remote information. */
time_t next_remote_refresh; /* Refresh timer. */
struct in_band_remote *remotes;
size_t n_remotes;
/* Local information. */
time_t next_local_refresh; /* Refresh timer. */
uint8_t local_mac[ETH_ADDR_LEN]; /* Current MAC. */
struct netdev *local_netdev; /* Local port's network device. */
/* Local and remote addresses that are installed as flows. */
uint8_t installed_local_mac[ETH_ADDR_LEN];
struct sockaddr_in *remote_addrs;
size_t n_remote_addrs;
uint8_t *remote_macs;
size_t n_remote_macs;
};
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 60);
static int
refresh_remote(struct in_band *ib, struct in_band_remote *r)
{
struct in_addr next_hop_inaddr;
char *next_hop_dev;
int retval;
/* Find the next-hop IP address. */
memset(r->remote_mac, 0, sizeof r->remote_mac);
retval = netdev_get_next_hop(ib->local_netdev, &r->remote_addr.sin_addr,
&next_hop_inaddr, &next_hop_dev);
if (retval) {
VLOG_WARN("cannot find route for controller ("IP_FMT"): %s",
IP_ARGS(&r->remote_addr.sin_addr), strerror(retval));
return 1;
}
if (!next_hop_inaddr.s_addr) {
next_hop_inaddr = r->remote_addr.sin_addr;
}
/* Open the next-hop network device. */
if (!r->remote_netdev
|| strcmp(netdev_get_name(r->remote_netdev), next_hop_dev))
{
netdev_close(r->remote_netdev);
retval = netdev_open_default(next_hop_dev, &r->remote_netdev);
if (retval) {
VLOG_WARN_RL(&rl, "cannot open netdev %s (next hop "
"to controller "IP_FMT"): %s",
next_hop_dev, IP_ARGS(&r->remote_addr.sin_addr),
strerror(retval));
free(next_hop_dev);
return 1;
}
}
free(next_hop_dev);
/* Look up the MAC address of the next-hop IP address. */
retval = netdev_arp_lookup(r->remote_netdev, next_hop_inaddr.s_addr,
r->remote_mac);
if (retval) {
VLOG_DBG_RL(&rl, "cannot look up remote MAC address ("IP_FMT"): %s",
IP_ARGS(&next_hop_inaddr.s_addr), strerror(retval));
}
/* If we don't have a MAC address, then refresh quickly, since we probably
* will get a MAC address soon (via ARP). Otherwise, we can afford to wait
* a little while. */
return eth_addr_is_zero(r->remote_mac) ? 1 : 10;
}
static bool
refresh_remotes(struct in_band *ib)
{
struct in_band_remote *r;
bool any_changes;
if (time_now() < ib->next_remote_refresh) {
return false;
}
any_changes = false;
ib->next_remote_refresh = TIME_MAX;
for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) {
uint8_t old_remote_mac[ETH_ADDR_LEN];
time_t next_refresh;
/* Save old MAC. */
memcpy(old_remote_mac, r->remote_mac, ETH_ADDR_LEN);
/* Refresh remote information. */
next_refresh = refresh_remote(ib, r) + time_now();
ib->next_remote_refresh = MIN(ib->next_remote_refresh, next_refresh);
/* If the MAC changed, log the changes. */
if (!eth_addr_equals(r->remote_mac, old_remote_mac)) {
any_changes = true;
if (!eth_addr_is_zero(r->remote_mac)
&& !eth_addr_equals(r->last_remote_mac, r->remote_mac)) {
VLOG_DBG("remote MAC address changed from "ETH_ADDR_FMT
" to "ETH_ADDR_FMT,
ETH_ADDR_ARGS(r->last_remote_mac),
ETH_ADDR_ARGS(r->remote_mac));
memcpy(r->last_remote_mac, r->remote_mac, ETH_ADDR_LEN);
}
}
}
return any_changes;
}
/* Refreshes the MAC address of the local port into ib->local_mac, if it is due
* for a refresh. Returns true if anything changed, otherwise false. */
static bool
refresh_local(struct in_band *ib)
{
uint8_t ea[ETH_ADDR_LEN];
time_t now;
now = time_now();
if (now < ib->next_local_refresh) {
return false;
}
ib->next_local_refresh = now + 1;
if (netdev_get_etheraddr(ib->local_netdev, ea)
|| eth_addr_equals(ea, ib->local_mac)) {
return false;
}
memcpy(ib->local_mac, ea, ETH_ADDR_LEN);
return true;
}
static void
in_band_status_cb(struct status_reply *sr, void *in_band_)
{
struct in_band *in_band = in_band_;
if (!eth_addr_is_zero(in_band->local_mac)) {
status_reply_put(sr, "local-mac="ETH_ADDR_FMT,
ETH_ADDR_ARGS(in_band->local_mac));
}
if (in_band->n_remotes
&& !eth_addr_is_zero(in_band->remotes[0].remote_mac)) {
status_reply_put(sr, "remote-mac="ETH_ADDR_FMT,
ETH_ADDR_ARGS(in_band->remotes[0].remote_mac));
}
}
/* Returns true if 'packet' should be sent to the local port regardless
* of the flow table. */
bool
in_band_msg_in_hook(struct in_band *in_band, const struct flow *flow,
const struct ofpbuf *packet)
{
if (!in_band) {
return false;
}
/* Regardless of how the flow table is configured, we want to be
* able to see replies to our DHCP requests. */
if (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IP_TYPE_UDP
&& flow->tp_src == htons(DHCP_SERVER_PORT)
&& flow->tp_dst == htons(DHCP_CLIENT_PORT)
&& packet->l7) {
struct dhcp_header *dhcp;
dhcp = ofpbuf_at(packet, (char *)packet->l7 - (char *)packet->data,
sizeof *dhcp);
if (!dhcp) {
return false;
}
refresh_local(in_band);
if (!eth_addr_is_zero(in_band->local_mac)
&& eth_addr_equals(dhcp->chaddr, in_band->local_mac)) {
return true;
}
}
return false;
}
/* Returns true if the rule that would match 'flow' with 'actions' is
* allowed to be set up in the datapath. */
bool
in_band_rule_check(struct in_band *in_band, const struct flow *flow,
const struct odp_actions *actions)
{
if (!in_band) {
return true;
}
/* Don't allow flows that would prevent DHCP replies from being seen
* by the local port. */
if (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IP_TYPE_UDP
&& flow->tp_src == htons(DHCP_SERVER_PORT)
&& flow->tp_dst == htons(DHCP_CLIENT_PORT)) {
int i;
for (i=0; i<actions->n_actions; i++) {
if (actions->actions[i].output.type == ODPAT_OUTPUT
&& actions->actions[i].output.port == ODPP_LOCAL) {
return true;
}
}
return false;
}
return true;
}
static void
make_rules(struct in_band *ib,
void (*cb)(struct in_band *, const struct cls_rule *))
{
struct cls_rule rule;
size_t i;
if (!eth_addr_is_zero(ib->installed_local_mac)) {
/* (a) Allow DHCP requests sent from the local port. */
cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_DHCP);
cls_rule_set_in_port(&rule, ODPP_LOCAL);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP));
cls_rule_set_dl_src(&rule, ib->installed_local_mac);
cls_rule_set_nw_proto(&rule, IP_TYPE_UDP);
cls_rule_set_tp_src(&rule, htons(DHCP_CLIENT_PORT));
cls_rule_set_tp_dst(&rule, htons(DHCP_SERVER_PORT));
cb(ib, &rule);
/* (b) Allow ARP replies to the local port's MAC address. */
cls_rule_init_catchall(&rule, IBR_TO_LOCAL_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_dl_dst(&rule, ib->installed_local_mac);
cls_rule_set_nw_proto(&rule, ARP_OP_REPLY);
cb(ib, &rule);
/* (c) Allow ARP requests from the local port's MAC address. */
cls_rule_init_catchall(&rule, IBR_FROM_LOCAL_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_dl_src(&rule, ib->installed_local_mac);
cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST);
cb(ib, &rule);
}
for (i = 0; i < ib->n_remote_macs; i++) {
const uint8_t *remote_mac = &ib->remote_macs[i * ETH_ADDR_LEN];
if (i > 0) {
const uint8_t *prev_mac = &ib->remote_macs[(i - 1) * ETH_ADDR_LEN];
if (eth_addr_equals(remote_mac, prev_mac)) {
/* Skip duplicates. */
continue;
}
}
/* (d) Allow ARP replies to the next hop's MAC address. */
cls_rule_init_catchall(&rule, IBR_TO_NEXT_HOP_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_dl_dst(&rule, remote_mac);
cls_rule_set_nw_proto(&rule, ARP_OP_REPLY);
cb(ib, &rule);
/* (e) Allow ARP requests from the next hop's MAC address. */
cls_rule_init_catchall(&rule, IBR_FROM_NEXT_HOP_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_dl_src(&rule, remote_mac);
cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST);
cb(ib, &rule);
}
for (i = 0; i < ib->n_remote_addrs; i++) {
const struct sockaddr_in *a = &ib->remote_addrs[i];
if (!i || a->sin_addr.s_addr != a[-1].sin_addr.s_addr) {
/* (f) Allow ARP replies containing the remote's IP address as a
* target. */
cls_rule_init_catchall(&rule, IBR_TO_REMOTE_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_nw_proto(&rule, ARP_OP_REPLY);
cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr);
cb(ib, &rule);
/* (g) Allow ARP requests containing the remote's IP address as a
* source. */
cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_ARP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_ARP));
cls_rule_set_nw_proto(&rule, ARP_OP_REQUEST);
cls_rule_set_nw_src(&rule, a->sin_addr.s_addr);
cb(ib, &rule);
}
if (!i
|| a->sin_addr.s_addr != a[-1].sin_addr.s_addr
|| a->sin_port != a[-1].sin_port) {
/* (h) Allow TCP traffic to the remote's IP and port. */
cls_rule_init_catchall(&rule, IBR_TO_REMOTE_TCP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP));
cls_rule_set_nw_proto(&rule, IP_TYPE_TCP);
cls_rule_set_nw_dst(&rule, a->sin_addr.s_addr);
cls_rule_set_tp_dst(&rule, a->sin_port);
cb(ib, &rule);
/* (i) Allow TCP traffic from the remote's IP and port. */
cls_rule_init_catchall(&rule, IBR_FROM_REMOTE_TCP);
cls_rule_set_dl_type(&rule, htons(ETH_TYPE_IP));
cls_rule_set_nw_proto(&rule, IP_TYPE_TCP);
cls_rule_set_nw_src(&rule, a->sin_addr.s_addr);
cls_rule_set_tp_src(&rule, a->sin_port);
cb(ib, &rule);
}
}
}
static void
drop_rule(struct in_band *ib, const struct cls_rule *rule)
{
ofproto_delete_flow(ib->ofproto, rule);
}
/* Drops from the flow table all of the flows set up by 'ib', then clears out
* the information about the installed flows so that they can be filled in
* again if necessary. */
static void
drop_rules(struct in_band *ib)
{
/* Drop rules. */
make_rules(ib, drop_rule);
/* Clear out state. */
memset(ib->installed_local_mac, 0, sizeof ib->installed_local_mac);
free(ib->remote_addrs);
ib->remote_addrs = NULL;
ib->n_remote_addrs = 0;
free(ib->remote_macs);
ib->remote_macs = NULL;
ib->n_remote_macs = 0;
}
static void
add_rule(struct in_band *ib, const struct cls_rule *rule)
{
struct {
struct nx_action_set_queue nxsq;
struct ofp_action_output oao;
} actions;
memset(&actions, 0, sizeof actions);
actions.oao.type = htons(OFPAT_OUTPUT);
actions.oao.len = htons(sizeof actions.oao);
actions.oao.port = htons(OFPP_NORMAL);
actions.oao.max_len = htons(0);
if (ib->queue_id < 0) {
ofproto_add_flow(ib->ofproto, rule,
(union ofp_action *) &actions.oao, 1);
} else {
actions.nxsq.type = htons(OFPAT_VENDOR);
actions.nxsq.len = htons(sizeof actions.nxsq);
actions.nxsq.vendor = htonl(NX_VENDOR_ID);
actions.nxsq.subtype = htons(NXAST_SET_QUEUE);
actions.nxsq.queue_id = htonl(ib->queue_id);
ofproto_add_flow(ib->ofproto, rule, (union ofp_action *) &actions,
sizeof actions / sizeof(union ofp_action));
}
}
/* Inserts flows into the flow table for the current state of 'ib'. */
static void
add_rules(struct in_band *ib)
{
make_rules(ib, add_rule);
}
static int
compare_addrs(const void *a_, const void *b_)
{
const struct sockaddr_in *a = a_;
const struct sockaddr_in *b = b_;
int cmp;
cmp = memcmp(&a->sin_addr.s_addr,
&b->sin_addr.s_addr,
sizeof a->sin_addr.s_addr);
if (cmp) {
return cmp;
}
return memcmp(&a->sin_port, &b->sin_port, sizeof a->sin_port);
}
static int
compare_macs(const void *a, const void *b)
{
return memcmp(a, b, ETH_ADDR_LEN);
}
void
in_band_run(struct in_band *ib)
{
bool local_change, remote_change, queue_id_change;
struct in_band_remote *r;
local_change = refresh_local(ib);
remote_change = refresh_remotes(ib);
queue_id_change = ib->queue_id != ib->prev_queue_id;
if (!local_change && !remote_change && !queue_id_change) {
/* Nothing changed, nothing to do. */
return;
}
ib->prev_queue_id = ib->queue_id;
/* Drop old rules. */
drop_rules(ib);
/* Figure out new rules. */
memcpy(ib->installed_local_mac, ib->local_mac, ETH_ADDR_LEN);
ib->remote_addrs = xmalloc(ib->n_remotes * sizeof *ib->remote_addrs);
ib->n_remote_addrs = 0;
ib->remote_macs = xmalloc(ib->n_remotes * ETH_ADDR_LEN);
ib->n_remote_macs = 0;
for (r = ib->remotes; r < &ib->remotes[ib->n_remotes]; r++) {
ib->remote_addrs[ib->n_remote_addrs++] = r->remote_addr;
if (!eth_addr_is_zero(r->remote_mac)) {
memcpy(&ib->remote_macs[ib->n_remote_macs * ETH_ADDR_LEN],
r->remote_mac, ETH_ADDR_LEN);
ib->n_remote_macs++;
}
}
/* Sort, to allow make_rules() to easily skip duplicates. */
qsort(ib->remote_addrs, ib->n_remote_addrs, sizeof *ib->remote_addrs,
compare_addrs);
qsort(ib->remote_macs, ib->n_remote_macs, ETH_ADDR_LEN, compare_macs);
/* Add new rules. */
add_rules(ib);
}
void
in_band_wait(struct in_band *in_band)
{
long long int wakeup
= MIN(in_band->next_remote_refresh, in_band->next_local_refresh);
poll_timer_wait_until(wakeup * 1000);
}
/* ofproto has flushed all flows from the flow table and it is calling us back
* to allow us to reinstall the ones that are important to us. */
void
in_band_flushed(struct in_band *in_band)
{
add_rules(in_band);
}
int
in_band_create(struct ofproto *ofproto, struct dpif *dpif,
struct switch_status *ss, struct in_band **in_bandp)
{
struct in_band *in_band;
char local_name[IF_NAMESIZE];
struct netdev *local_netdev;
int error;
*in_bandp = NULL;
error = dpif_port_get_name(dpif, ODPP_LOCAL,
local_name, sizeof local_name);
if (error) {
VLOG_ERR("failed to initialize in-band control: cannot get name "
"of datapath local port (%s)", strerror(error));
return error;
}
error = netdev_open_default(local_name, &local_netdev);
if (error) {
VLOG_ERR("failed to initialize in-band control: cannot open "
"datapath local port %s (%s)", local_name, strerror(error));
return error;
}
in_band = xzalloc(sizeof *in_band);
in_band->ofproto = ofproto;
in_band->ss_cat = switch_status_register(ss, "in-band",
in_band_status_cb, in_band);
in_band->queue_id = in_band->prev_queue_id = -1;
in_band->next_remote_refresh = TIME_MIN;
in_band->next_local_refresh = TIME_MIN;
in_band->local_netdev = local_netdev;
*in_bandp = in_band;
return 0;
}
void
in_band_destroy(struct in_band *ib)
{
if (ib) {
drop_rules(ib);
in_band_set_remotes(ib, NULL, 0);
switch_status_unregister(ib->ss_cat);
netdev_close(ib->local_netdev);
free(ib);
}
}
static bool
any_addresses_changed(struct in_band *ib,
const struct sockaddr_in *addresses, size_t n)
{
size_t i;
if (n != ib->n_remotes) {
return true;
}
for (i = 0; i < n; i++) {
const struct sockaddr_in *old = &ib->remotes[i].remote_addr;
const struct sockaddr_in *new = &addresses[i];
if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
old->sin_port != new->sin_port) {
return true;
}
}
return false;
}
void
in_band_set_remotes(struct in_band *ib,
const struct sockaddr_in *addresses, size_t n)
{
size_t i;
if (!any_addresses_changed(ib, addresses, n)) {
return;
}
/* Clear old remotes. */
for (i = 0; i < ib->n_remotes; i++) {
netdev_close(ib->remotes[i].remote_netdev);
}
free(ib->remotes);
/* Set up new remotes. */
ib->remotes = n ? xzalloc(n * sizeof *ib->remotes) : NULL;
ib->n_remotes = n;
for (i = 0; i < n; i++) {
ib->remotes[i].remote_addr = addresses[i];
}
/* Force refresh in next call to in_band_run(). */
ib->next_remote_refresh = TIME_MIN;
}
/* Sets the OpenFlow queue used by flows set up by 'ib' to 'queue_id'. If
* 'queue_id' is negative, 'ib' will not set any queue (which is also the
* default). */
void
in_band_set_queue(struct in_band *ib, int queue_id)
{
ib->queue_id = queue_id;
}