Nipype implementation of WMH segmentation pipelines.
the winning method in MICCAI 2017 WMH segmentation challenge orginal work repository: (wmh_ibbmTum)
conda create -n wmhpypes -c conda-forge pip
conda activate wmhpypes
git clone https://github.com/0rC0/WMHpypes.git
cd WMHpypes
pip install -r requirements.txt
pip install .
git clone https://github.com/0rC0/WMHpypes.git
cd WMHpypes
conda env create -f conda_env_cpu.yml
conda activate wmhpypes
pip install .
git clone https://github.com/0rC0/WMHpypes.git
cd WMHpypes
# for the GPU implementation see also https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
docker build -f Dockerfile_gpu -t wmhpypes_gpu .
See Quickstart
Jupyter notebooks in the example
directory
docker run -v $PWD:/data --gpus all wmhpypes_gpu:latest -f '/data/test/*' -w '/data/WMHpypes/models/*.h5' -o '/data'
If you use the package please cite the original author's paper:
Gaubert, M., Dell’Orco, A., Lange, C., Garnier-Crussard, A., Zimmermann, I., Dyrba, M., ... & Max, K. (2023). Performance evaluation of automated white matter hyperintensity segmentation algorithms in a multicenter cohort on cognitive impairment and dementia. Frontiers in psychiatry, 13, 1010273.
Li, Hongwei & Jiang, Gongfa & Wang, Ruixuan & Zhang, Jianguo & Wang, Zhaolei & Zheng, Wei-Shi & Menze, Bjoern. (2018). Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images. NeuroImage. 183. 10.1016/j.neuroimage.2018.07.005.