Skip to content

Source code for ICLR 2021 paper: "Molecule Optimization by Explainable Evolution"

License

Notifications You must be signed in to change notification settings

2494483957/MolEvol

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Molecule Optimization by Explainable Evolution

@inproceedings{Chen2021MolEvol,
    title={Molecule Optimization by Explainable Evolution},
    author={Binghong Chen* and Tianzhe Wang* and Chengtao Li and Hanjun Dai and Le Song},
    booktitle={International Conference on Learning Representations},
    year={2021}
}

Overview

We release the PyTorch code for the MolEvol. [Paper]:

Details for Graph Explanation Process

Install Dependencies

You should install dependencies for chemprop and multiobj-rationale first.

Install chemprop

conda create -n chemprop python=3.8
conda activate chemprop
conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch
conda install -c conda-forge rdkit
pip install -r requirements.txt
pip install chemprop

Install multiobj-rationale

cd ..
git clone [email protected]:binghong-ml/multiobj-rationale.git
cd multiobj-rationale
pip install -e .
cd ../MolEvol

Also, please download the model files into the root directory.

How to Use

For instance, if you want to jointly optimize jnk3, gsk3, QED, SA for the molecules.

Run the following command:

export CUDA_VISIBLE_DEVICES=0
export TF_CPP_MIN_LOG_LEVEL=2
export PYTHONPATH=$PWD
python MolEvol/main.py --rounds=10 --epoch=1

You will get the molecule optimization model along with the optimized molecules in the experiment folder.

About

Source code for ICLR 2021 paper: "Molecule Optimization by Explainable Evolution"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%