Skip to content

Parallel Attention Network with Sequence Matching for Video Grounding (Findings of ACL 2021)

License

Notifications You must be signed in to change notification settings

26hzhang/SeqPAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parallel Attention Network with Sequence Matching for Video Grounding

TensorFlow implementation for the paper "Parallel Attention Network with Sequence Matching for Video Grounding" (ACL 2021 Findings): ACL version, ArXiv version.

overview

Prerequisites

  • python3 with tensorflow (>=1.13.1, <=1.15.0), tqdm, nltk, numpy, cuda10 and cudnn

Preparation

The visual features of Charades-STA, ActivityNet Captions and TACoS are available at Box Drive, download and place them under the ./data/features/ directory. Download the word embeddings from here and place it to ./data/features/ directory. Directory hierarchies are shown below:

SeqPAN
    |____ ckpt/
    |____ data/
        |____ datasets/
        |____ features/
            |____ activitynet/
            |____ charades/
            |____ tacos/
            |____ glove.840B.300d.txt
    ...

Quick Start

Train

# processed dataset will be automatically generated or loaded if exist
# set `--mode test` for evaluation
# train Charades-STA dataset
python main.py --task charades --max_pos_len 64 --char_dim 50 --mode train
# train ActivityNet Captions dataset
python main.py --task activitynet --max_pos_len 100 --char_dim 100 --mode train
# train TACoS dataset
python main.py --task tacos --max_pos_len 256 --char_dim 50 --mode train

Test

# processed dataset will be automatically generated or loaded if exist
# set `--suffix xxx` to restore pre-trained parameters for evaluation
# where `xxx` denotes the name after the last `_` of the ckpt directory
# train Charades-STA dataset
python main.py --task charades --max_pos_len 64 --char_dim 50 --suffix xxx --mode test
# train ActivityNet Captions dataset
python main.py --task activitynet --max_pos_len 100 --char_dim 100 --suffix xxx --mode test
# train TACoS dataset
python main.py --task tacos --max_pos_len 256 --char_dim 50 --suffix xxx --mode test

You can also download the checkpoints for each task from here and save them to the ./ckpt/ directory. The corresponding processed dataset is available at here, download and save them to the ./datasets/ directory. More hyper-parameter settings are in the main.py.

Citation

If you feel this project helpful to your research, please cite our work.

@inproceedings{zhang2021parallel,
    title = "Parallel Attention Network with Sequence Matching for Video Grounding",
    author = "Zhang, Hao  and Sun, Aixin  and Jing, Wei  and Zhen, Liangli  and Zhou, Joey Tianyi  and Goh, Siow Mong Rick",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.69",
    doi = "10.18653/v1/2021.findings-acl.69",
    pages = "776--790",
}

About

Parallel Attention Network with Sequence Matching for Video Grounding (Findings of ACL 2021)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages