Skip to content

731935354/Dia-Sum-Fact

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

DiaSumFact

This repositry contains dataset and code for the ACL2023 paper: Annotating and Detecting Fine-grained Factual Errors for Dialogue Summarization

Dataset

We provide fine-grained annotations regarding factual errors in dialogue summarization. The data are sampled from SAMSum and QMSum. Our dataset contains 1340 sentence-level annotations (dialogue-sentence pairs).

data format

All annotations are in annotations.json. Each record is corresponding to a dialogue in the following format.

{
    '<dialog-id>': {
        'utterances': [
            '<utt1>',
            '<utt2>',
            ...
        ]
        'query': '<query>'  # empty for records in SAMSum
        'target_summary': '<original reference summary>',
        'dataset_name': '<dataset name>'  # 'QMSum' or 'SAMSum'
        'group_idx': integer in [1,2,3,4,5,6],
        'annotations': {
            '<summarization_model_name>': {
                'model_prediction': model-generated summary, usually containing multiple sentences
                'sentence_annotations': [
                    {
                        'index': integer starting from 0,
                        'sentence': one sentence from the model-generated summary,
                        'annotation': [
                            'error_class': str, the semantic class of the factual error,
                            'error_span': str, the span that contains a factual error,
                            'intrinsic/extrinsic': "intrinsic" / "extrinsic" / "n/a",
                            'comment': explains why there is an error, or a potential correction to the error
                        ]
                    },
                    ...  # other sentences
                ]
            },
            ... # other summarization models
        }    
    }
}

Code

coming soon

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published