forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MRG] Sliced wasserstein (PythonOT#203)
* example for log treatment in bregman.py * Improve doc * Revert "example for log treatment in bregman.py" This reverts commit 9f51c14 * Add comments by Flamary * Delete repetitive description * Added raw string to avoid pbs with backslashes * Implements sliced wasserstein * Changed formatting of string for py3.5 support * Docstest, expected 0.0 and not 0. * Adressed comments by @rflamary * No 3d plot here * add sliced to the docs * Incorporate comments by @rflamary * add link to pdf Co-authored-by: Rémi Flamary <[email protected]>
- Loading branch information
1 parent
7adc1b1
commit 78b44af
Showing
7 changed files
with
324 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
|
||
|
||
Sliced Wasserstein Distance | ||
--------------------------- |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
============================== | ||
2D Sliced Wasserstein Distance | ||
============================== | ||
This example illustrates the computation of the sliced Wasserstein Distance as proposed in [31]. | ||
[31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45 | ||
""" | ||
|
||
# Author: Adrien Corenflos <[email protected]> | ||
# | ||
# License: MIT License | ||
|
||
import matplotlib.pylab as pl | ||
import numpy as np | ||
|
||
import ot | ||
|
||
############################################################################## | ||
# Generate data | ||
# ------------- | ||
|
||
# %% parameters and data generation | ||
|
||
n = 500 # nb samples | ||
|
||
mu_s = np.array([0, 0]) | ||
cov_s = np.array([[1, 0], [0, 1]]) | ||
|
||
mu_t = np.array([4, 4]) | ||
cov_t = np.array([[1, -.8], [-.8, 1]]) | ||
|
||
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s) | ||
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t) | ||
|
||
a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples | ||
|
||
############################################################################## | ||
# Plot data | ||
# --------- | ||
|
||
# %% plot samples | ||
|
||
pl.figure(1) | ||
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') | ||
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') | ||
pl.legend(loc=0) | ||
pl.title('Source and target distributions') | ||
|
||
################################################################################### | ||
# Compute Sliced Wasserstein distance for different seeds and number of projections | ||
# ----------- | ||
|
||
n_seed = 50 | ||
n_projections_arr = np.logspace(0, 3, 25, dtype=int) | ||
res = np.empty((n_seed, 25)) | ||
|
||
# %% Compute statistics | ||
for seed in range(n_seed): | ||
for i, n_projections in enumerate(n_projections_arr): | ||
res[seed, i] = ot.sliced_wasserstein_distance(xs, xt, a, b, n_projections, seed) | ||
|
||
res_mean = np.mean(res, axis=0) | ||
res_std = np.std(res, axis=0) | ||
|
||
################################################################################### | ||
# Plot Sliced Wasserstein Distance | ||
# ----------- | ||
|
||
pl.figure(2) | ||
pl.plot(n_projections_arr, res_mean, label="SWD") | ||
pl.fill_between(n_projections_arr, res_mean - 2 * res_std, res_mean + 2 * res_std, alpha=0.5) | ||
|
||
pl.legend() | ||
pl.xscale('log') | ||
|
||
pl.xlabel("Number of projections") | ||
pl.ylabel("Distance") | ||
pl.title('Sliced Wasserstein Distance with 95% confidence inverval') | ||
|
||
pl.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
""" | ||
Sliced Wasserstein Distance. | ||
""" | ||
|
||
# Author: Adrien Corenflos <[email protected]> | ||
# | ||
# License: MIT License | ||
|
||
|
||
import numpy as np | ||
|
||
|
||
def get_random_projections(n_projections, d, seed=None): | ||
r""" | ||
Generates n_projections samples from the uniform on the unit sphere of dimension d-1: :math:`\mathcal{U}(\mathcal{S}^{d-1})` | ||
Parameters | ||
---------- | ||
n_projections : int | ||
number of samples requested | ||
d : int | ||
dimension of the space | ||
seed: int or RandomState, optional | ||
Seed used for numpy random number generator | ||
Returns | ||
------- | ||
out: ndarray, shape (n_projections, d) | ||
The uniform unit vectors on the sphere | ||
Examples | ||
-------- | ||
>>> n_projections = 100 | ||
>>> d = 5 | ||
>>> projs = get_random_projections(n_projections, d) | ||
>>> np.allclose(np.sum(np.square(projs), 1), 1.) # doctest: +NORMALIZE_WHITESPACE | ||
True | ||
""" | ||
|
||
if not isinstance(seed, np.random.RandomState): | ||
random_state = np.random.RandomState(seed) | ||
else: | ||
random_state = seed | ||
|
||
projections = random_state.normal(0., 1., [n_projections, d]) | ||
norm = np.linalg.norm(projections, ord=2, axis=1, keepdims=True) | ||
projections = projections / norm | ||
return projections | ||
|
||
|
||
def sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, seed=None, log=False): | ||
r""" | ||
Computes a Monte-Carlo approximation of the 2-Sliced Wasserstein distance | ||
.. math:: | ||
\mathcal{SWD}_2(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}[\mathcal{W}_2^2(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{2}} | ||
where : | ||
- :math:`\theta_\# \mu` stands for the pushforwars of the projection :math:`\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle` | ||
Parameters | ||
---------- | ||
X_s : ndarray, shape (n_samples_a, dim) | ||
samples in the source domain | ||
X_t : ndarray, shape (n_samples_b, dim) | ||
samples in the target domain | ||
a : ndarray, shape (n_samples_a,), optional | ||
samples weights in the source domain | ||
b : ndarray, shape (n_samples_b,), optional | ||
samples weights in the target domain | ||
n_projections : int, optional | ||
Number of projections used for the Monte-Carlo approximation | ||
seed: int or RandomState or None, optional | ||
Seed used for numpy random number generator | ||
log: bool, optional | ||
if True, sliced_wasserstein_distance returns the projections used and their associated EMD. | ||
Returns | ||
------- | ||
cost: float | ||
Sliced Wasserstein Cost | ||
log : dict, optional | ||
log dictionary return only if log==True in parameters | ||
Examples | ||
-------- | ||
>>> n_samples_a = 20 | ||
>>> reg = 0.1 | ||
>>> X = np.random.normal(0., 1., (n_samples_a, 5)) | ||
>>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE | ||
0.0 | ||
References | ||
---------- | ||
.. [31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45 | ||
""" | ||
from .lp import emd2_1d | ||
|
||
X_s = np.asanyarray(X_s) | ||
X_t = np.asanyarray(X_t) | ||
|
||
n = X_s.shape[0] | ||
m = X_t.shape[0] | ||
|
||
if X_s.shape[1] != X_t.shape[1]: | ||
raise ValueError( | ||
"X_s and X_t must have the same number of dimensions {} and {} respectively given".format(X_s.shape[1], | ||
X_t.shape[1])) | ||
|
||
if a is None: | ||
a = np.full(n, 1 / n) | ||
if b is None: | ||
b = np.full(m, 1 / m) | ||
|
||
d = X_s.shape[1] | ||
|
||
projections = get_random_projections(n_projections, d, seed) | ||
|
||
X_s_projections = np.dot(projections, X_s.T) | ||
X_t_projections = np.dot(projections, X_t.T) | ||
|
||
if log: | ||
projected_emd = np.empty(n_projections) | ||
else: | ||
projected_emd = None | ||
|
||
res = 0. | ||
|
||
for i, (X_s_proj, X_t_proj) in enumerate(zip(X_s_projections, X_t_projections)): | ||
emd = emd2_1d(X_s_proj, X_t_proj, a, b, log=False, dense=False) | ||
if projected_emd is not None: | ||
projected_emd[i] = emd | ||
res += emd | ||
|
||
res = (res / n_projections) ** 0.5 | ||
if log: | ||
return res, {"projections": projections, "projected_emds": projected_emd} | ||
return res |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
"""Tests for module sliced""" | ||
|
||
# Author: Adrien Corenflos <[email protected]> | ||
# | ||
# License: MIT License | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import ot | ||
from ot.sliced import get_random_projections | ||
|
||
|
||
def test_get_random_projections(): | ||
rng = np.random.RandomState(0) | ||
projections = get_random_projections(1000, 50, rng) | ||
np.testing.assert_almost_equal(np.sum(projections ** 2, 1), 1.) | ||
|
||
|
||
def test_sliced_same_dist(): | ||
n = 100 | ||
rng = np.random.RandomState(0) | ||
|
||
x = rng.randn(n, 2) | ||
u = ot.utils.unif(n) | ||
|
||
res = ot.sliced_wasserstein_distance(x, x, u, u, 10, seed=rng) | ||
np.testing.assert_almost_equal(res, 0.) | ||
|
||
|
||
def test_sliced_bad_shapes(): | ||
n = 100 | ||
rng = np.random.RandomState(0) | ||
|
||
x = rng.randn(n, 2) | ||
y = rng.randn(n, 4) | ||
u = ot.utils.unif(n) | ||
|
||
with pytest.raises(ValueError): | ||
_ = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng) | ||
|
||
|
||
def test_sliced_log(): | ||
n = 100 | ||
rng = np.random.RandomState(0) | ||
|
||
x = rng.randn(n, 4) | ||
y = rng.randn(n, 4) | ||
u = ot.utils.unif(n) | ||
|
||
res, log = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng, log=True) | ||
assert len(log) == 2 | ||
projections = log["projections"] | ||
projected_emds = log["projected_emds"] | ||
|
||
assert len(projections) == len(projected_emds) == 10 | ||
for emd in projected_emds: | ||
assert emd > 0 | ||
|
||
|
||
def test_sliced_different_dists(): | ||
n = 100 | ||
rng = np.random.RandomState(0) | ||
|
||
x = rng.randn(n, 2) | ||
u = ot.utils.unif(n) | ||
y = rng.randn(n, 2) | ||
|
||
res = ot.sliced_wasserstein_distance(x, y, u, u, 10, seed=rng) | ||
assert res > 0. | ||
|
||
|
||
def test_1d_sliced_equals_emd(): | ||
n = 100 | ||
m = 120 | ||
rng = np.random.RandomState(0) | ||
|
||
x = rng.randn(n, 1) | ||
a = rng.uniform(0, 1, n) | ||
a /= a.sum() | ||
y = rng.randn(m, 1) | ||
u = ot.utils.unif(m) | ||
res = ot.sliced_wasserstein_distance(x, y, a, u, 10, seed=42) | ||
expected = ot.emd2_1d(x.squeeze(), y.squeeze(), a, u) | ||
np.testing.assert_almost_equal(res ** 2, expected) |