forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request PythonOT#47 from rflamary/bary
LP Wasserstein barycenter with scipy linear solver and/or cvxopt
- Loading branch information
Showing
9 changed files
with
488 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
================================================================================= | ||
1D Wasserstein barycenter comparison between exact LP and entropic regularization | ||
================================================================================= | ||
This example illustrates the computation of regularized Wasserstein Barycenter | ||
as proposed in [3] and exact LP barycenters using standard LP solver. | ||
It reproduces approximately Figure 3.1 and 3.2 from the following paper: | ||
Cuturi, M., & Peyré, G. (2016). A smoothed dual approach for variational | ||
Wasserstein problems. SIAM Journal on Imaging Sciences, 9(1), 320-343. | ||
[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). | ||
Iterative Bregman projections for regularized transportation problems | ||
SIAM Journal on Scientific Computing, 37(2), A1111-A1138. | ||
""" | ||
|
||
# Author: Remi Flamary <[email protected]> | ||
# | ||
# License: MIT License | ||
|
||
import numpy as np | ||
import matplotlib.pylab as pl | ||
import ot | ||
# necessary for 3d plot even if not used | ||
from mpl_toolkits.mplot3d import Axes3D # noqa | ||
from matplotlib.collections import PolyCollection # noqa | ||
|
||
#import ot.lp.cvx as cvx | ||
|
||
# | ||
# Generate data | ||
# ------------- | ||
|
||
#%% parameters | ||
|
||
problems = [] | ||
|
||
n = 100 # nb bins | ||
|
||
# bin positions | ||
x = np.arange(n, dtype=np.float64) | ||
|
||
# Gaussian distributions | ||
# Gaussian distributions | ||
a1 = ot.datasets.get_1D_gauss(n, m=20, s=5) # m= mean, s= std | ||
a2 = ot.datasets.get_1D_gauss(n, m=60, s=8) | ||
|
||
# creating matrix A containing all distributions | ||
A = np.vstack((a1, a2)).T | ||
n_distributions = A.shape[1] | ||
|
||
# loss matrix + normalization | ||
M = ot.utils.dist0(n) | ||
M /= M.max() | ||
|
||
# | ||
# Plot data | ||
# --------- | ||
|
||
#%% plot the distributions | ||
|
||
pl.figure(1, figsize=(6.4, 3)) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
pl.tight_layout() | ||
|
||
# | ||
# Barycenter computation | ||
# ---------------------- | ||
|
||
#%% barycenter computation | ||
|
||
alpha = 0.5 # 0<=alpha<=1 | ||
weights = np.array([1 - alpha, alpha]) | ||
|
||
# l2bary | ||
bary_l2 = A.dot(weights) | ||
|
||
# wasserstein | ||
reg = 1e-3 | ||
ot.tic() | ||
bary_wass = ot.bregman.barycenter(A, M, reg, weights) | ||
ot.toc() | ||
|
||
|
||
ot.tic() | ||
bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True) | ||
ot.toc() | ||
|
||
pl.figure(2) | ||
pl.clf() | ||
pl.subplot(2, 1, 1) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
|
||
pl.subplot(2, 1, 2) | ||
pl.plot(x, bary_l2, 'r', label='l2') | ||
pl.plot(x, bary_wass, 'g', label='Reg Wasserstein') | ||
pl.plot(x, bary_wass2, 'b', label='LP Wasserstein') | ||
pl.legend() | ||
pl.title('Barycenters') | ||
pl.tight_layout() | ||
|
||
problems.append([A, [bary_l2, bary_wass, bary_wass2]]) | ||
|
||
#%% parameters | ||
|
||
a1 = 1.0 * (x > 10) * (x < 50) | ||
a2 = 1.0 * (x > 60) * (x < 80) | ||
|
||
a1 /= a1.sum() | ||
a2 /= a2.sum() | ||
|
||
# creating matrix A containing all distributions | ||
A = np.vstack((a1, a2)).T | ||
n_distributions = A.shape[1] | ||
|
||
# loss matrix + normalization | ||
M = ot.utils.dist0(n) | ||
M /= M.max() | ||
|
||
|
||
#%% plot the distributions | ||
|
||
pl.figure(1, figsize=(6.4, 3)) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
pl.tight_layout() | ||
|
||
# | ||
# Barycenter computation | ||
# ---------------------- | ||
|
||
#%% barycenter computation | ||
|
||
alpha = 0.5 # 0<=alpha<=1 | ||
weights = np.array([1 - alpha, alpha]) | ||
|
||
# l2bary | ||
bary_l2 = A.dot(weights) | ||
|
||
# wasserstein | ||
reg = 1e-3 | ||
ot.tic() | ||
bary_wass = ot.bregman.barycenter(A, M, reg, weights) | ||
ot.toc() | ||
|
||
|
||
ot.tic() | ||
bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True) | ||
ot.toc() | ||
|
||
|
||
problems.append([A, [bary_l2, bary_wass, bary_wass2]]) | ||
|
||
pl.figure(2) | ||
pl.clf() | ||
pl.subplot(2, 1, 1) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
|
||
pl.subplot(2, 1, 2) | ||
pl.plot(x, bary_l2, 'r', label='l2') | ||
pl.plot(x, bary_wass, 'g', label='Reg Wasserstein') | ||
pl.plot(x, bary_wass2, 'b', label='LP Wasserstein') | ||
pl.legend() | ||
pl.title('Barycenters') | ||
pl.tight_layout() | ||
|
||
#%% parameters | ||
|
||
a1 = np.zeros(n) | ||
a2 = np.zeros(n) | ||
|
||
a1[10] = .25 | ||
a1[20] = .5 | ||
a1[30] = .25 | ||
a2[80] = 1 | ||
|
||
|
||
a1 /= a1.sum() | ||
a2 /= a2.sum() | ||
|
||
# creating matrix A containing all distributions | ||
A = np.vstack((a1, a2)).T | ||
n_distributions = A.shape[1] | ||
|
||
# loss matrix + normalization | ||
M = ot.utils.dist0(n) | ||
M /= M.max() | ||
|
||
|
||
#%% plot the distributions | ||
|
||
pl.figure(1, figsize=(6.4, 3)) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
pl.tight_layout() | ||
|
||
# | ||
# Barycenter computation | ||
# ---------------------- | ||
|
||
#%% barycenter computation | ||
|
||
alpha = 0.5 # 0<=alpha<=1 | ||
weights = np.array([1 - alpha, alpha]) | ||
|
||
# l2bary | ||
bary_l2 = A.dot(weights) | ||
|
||
# wasserstein | ||
reg = 1e-3 | ||
ot.tic() | ||
bary_wass = ot.bregman.barycenter(A, M, reg, weights) | ||
ot.toc() | ||
|
||
|
||
ot.tic() | ||
bary_wass2 = ot.lp.barycenter(A, M, weights, solver='interior-point', verbose=True) | ||
ot.toc() | ||
|
||
|
||
problems.append([A, [bary_l2, bary_wass, bary_wass2]]) | ||
|
||
pl.figure(2) | ||
pl.clf() | ||
pl.subplot(2, 1, 1) | ||
for i in range(n_distributions): | ||
pl.plot(x, A[:, i]) | ||
pl.title('Distributions') | ||
|
||
pl.subplot(2, 1, 2) | ||
pl.plot(x, bary_l2, 'r', label='l2') | ||
pl.plot(x, bary_wass, 'g', label='Reg Wasserstein') | ||
pl.plot(x, bary_wass2, 'b', label='LP Wasserstein') | ||
pl.legend() | ||
pl.title('Barycenters') | ||
pl.tight_layout() | ||
|
||
|
||
# | ||
# Final figure | ||
# ------------ | ||
# | ||
|
||
#%% plot | ||
|
||
nbm = len(problems) | ||
nbm2 = (nbm // 2) | ||
|
||
|
||
pl.figure(2, (20, 6)) | ||
pl.clf() | ||
|
||
for i in range(nbm): | ||
|
||
A = problems[i][0] | ||
bary_l2 = problems[i][1][0] | ||
bary_wass = problems[i][1][1] | ||
bary_wass2 = problems[i][1][2] | ||
|
||
pl.subplot(2, nbm, 1 + i) | ||
for j in range(n_distributions): | ||
pl.plot(x, A[:, j]) | ||
if i == nbm2: | ||
pl.title('Distributions') | ||
pl.xticks(()) | ||
pl.yticks(()) | ||
|
||
pl.subplot(2, nbm, 1 + i + nbm) | ||
|
||
pl.plot(x, bary_l2, 'r', label='L2 (Euclidean)') | ||
pl.plot(x, bary_wass, 'g', label='Reg Wasserstein') | ||
pl.plot(x, bary_wass2, 'b', label='LP Wasserstein') | ||
if i == nbm - 1: | ||
pl.legend() | ||
if i == nbm2: | ||
pl.title('Barycenters') | ||
|
||
pl.xticks(()) | ||
pl.yticks(()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.