forked from allanzelener/YAD2K
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request allanzelener#26 from shadySource/update_origional
Add Retraining Script
- Loading branch information
Showing
3 changed files
with
342 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,338 @@ | ||
""" | ||
This is a script that can be used to retrain the YOLOv2 model for your own dataset. | ||
""" | ||
import argparse | ||
|
||
import os | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import PIL | ||
import tensorflow as tf | ||
from keras import backend as K | ||
from keras.layers import Input, Lambda, Conv2D | ||
from keras.models import load_model, Model | ||
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping | ||
|
||
from yad2k.models.keras_yolo import (preprocess_true_boxes, yolo_body, | ||
yolo_eval, yolo_head, yolo_loss) | ||
from yad2k.utils.draw_boxes import draw_boxes | ||
|
||
# Args | ||
argparser = argparse.ArgumentParser( | ||
description="Retrain or 'fine-tune' a pretrained YOLOv2 model for your own data.") | ||
|
||
argparser.add_argument( | ||
'-d', | ||
'--data_path', | ||
help="path to numpy data file (.npz) containing np.object array 'boxes' and np.uint8 array 'images'", | ||
default=os.path.join('..', 'DATA', 'underwater_data.npz')) | ||
|
||
argparser.add_argument( | ||
'-a', | ||
'--anchors_path', | ||
help='path to anchors file, defaults to yolo_anchors.txt', | ||
default=os.path.join('model_data', 'yolo_anchors.txt')) | ||
|
||
argparser.add_argument( | ||
'-c', | ||
'--classes_path', | ||
help='path to classes file, defaults to pascal_classes.txt', | ||
default=os.path.join('..', 'DATA', 'underwater_classes.txt')) | ||
|
||
# Default anchor boxes | ||
YOLO_ANCHORS = np.array( | ||
((0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), | ||
(7.88282, 3.52778), (9.77052, 9.16828))) | ||
|
||
def _main(args): | ||
data_path = os.path.expanduser(args.data_path) | ||
classes_path = os.path.expanduser(args.classes_path) | ||
anchors_path = os.path.expanduser(args.anchors_path) | ||
|
||
class_names = get_classes(classes_path) | ||
anchors = get_anchors(anchors_path) | ||
|
||
data = np.load(data_path) # custom data saved as a numpy file. | ||
# has 2 arrays: an object array 'boxes' (variable length of boxes in each image) | ||
# and an array of images 'images' | ||
|
||
image_data, boxes = process_data(data['images'], data['boxes']) | ||
|
||
anchors = YOLO_ANCHORS | ||
|
||
detectors_mask, matching_true_boxes = get_detector_mask(boxes, anchors) | ||
|
||
model_body, model = create_model(anchors, class_names) | ||
|
||
train( | ||
model, | ||
class_names, | ||
anchors, | ||
image_data, | ||
boxes, | ||
detectors_mask, | ||
matching_true_boxes | ||
) | ||
|
||
draw(model_body, | ||
class_names, | ||
anchors, | ||
image_data, | ||
image_set='val', # assumes training/validation split is 0.9 | ||
weights_name='trained_stage_3_best.h5', | ||
save_all=False) | ||
|
||
|
||
def get_classes(classes_path): | ||
'''loads the classes''' | ||
with open(classes_path) as f: | ||
class_names = f.readlines() | ||
class_names = [c.strip() for c in class_names] | ||
return class_names | ||
|
||
def get_anchors(anchors_path): | ||
'''loads the anchors from a file''' | ||
if os.path.isfile(anchors_path): | ||
with open(anchors_path) as f: | ||
anchors = f.readline() | ||
anchors = [float(x) for x in anchors.split(',')] | ||
return np.array(anchors).reshape(-1, 2) | ||
else: | ||
Warning("Could not open anchors file, using default.") | ||
return YOLO_ANCHORS | ||
|
||
def process_data(images, boxes=None): | ||
'''processes the data''' | ||
images = [PIL.Image.fromarray(i) for i in images] | ||
orig_size = np.array([images[0].width, images[0].height]) | ||
orig_size = np.expand_dims(orig_size, axis=0) | ||
|
||
# Image preprocessing. | ||
processed_images = [i.resize((416, 416), PIL.Image.BICUBIC) for i in images] | ||
processed_images = [np.array(image, dtype=np.float) for image in processed_images] | ||
processed_images = [image/255. for image in processed_images] | ||
|
||
if boxes is not None: | ||
# Box preprocessing. | ||
# Original boxes stored as 1D list of class, x_min, y_min, x_max, y_max. | ||
boxes = [box.reshape((-1, 5)) for box in boxes] | ||
# Get extents as y_min, x_min, y_max, x_max, class for comparision with | ||
# model output. | ||
boxes_extents = [box[:, [2, 1, 4, 3, 0]] for box in boxes] | ||
|
||
# Get box parameters as x_center, y_center, box_width, box_height, class. | ||
boxes_xy = [0.5 * (box[:, 3:5] + box[:, 1:3]) for box in boxes] | ||
boxes_wh = [box[:, 3:5] - box[:, 1:3] for box in boxes] | ||
boxes_xy = [boxxy / orig_size for boxxy in boxes_xy] | ||
boxes_wh = [boxwh / orig_size for boxwh in boxes_wh] | ||
boxes = [np.concatenate((boxes_xy[i], boxes_wh[i], box[:, 0:1]), axis=1) for i, box in enumerate(boxes)] | ||
|
||
for i, boxz in enumerate(boxes): # zero pad for training | ||
if boxz.shape[0] < 6: | ||
zero_padding = np.zeros( (6-boxz.shape[0], 5), dtype=np.float32) | ||
boxes[i] = np.vstack((boxz, zero_padding)) | ||
|
||
return np.array(processed_images), np.array(boxes) | ||
else: | ||
return np.array(processed_images) | ||
|
||
def get_detector_mask(boxes, anchors): | ||
''' | ||
Precompute detectors_mask and matching_true_boxes for training. | ||
Detectors mask is 1 for each spatial position in the final conv layer and | ||
anchor that should be active for the given boxes and 0 otherwise. | ||
Matching true boxes gives the regression targets for the ground truth box | ||
that caused a detector to be active or 0 otherwise. | ||
''' | ||
detectors_mask = [0 for i in range(len(boxes))] | ||
matching_true_boxes = [0 for i in range(len(boxes))] | ||
for i, box in enumerate(boxes): | ||
detectors_mask[i], matching_true_boxes[i] = preprocess_true_boxes(box, anchors, [416, 416]) | ||
|
||
return np.array(detectors_mask), np.array(matching_true_boxes) | ||
|
||
def create_model(anchors, class_names, load_pretrained=True, freeze_body=True): | ||
''' | ||
returns the body of the model and the model | ||
# Params: | ||
load_pretrained: whether or not to load the pretrained model or initialize all weights | ||
freeze_body: whether or not to freeze all weights except for the last layer's | ||
# Returns: | ||
model_body: YOLOv2 with new output layer | ||
model: YOLOv2 with custom loss Lambda layer | ||
''' | ||
|
||
detectors_mask_shape = (13, 13, 5, 1) | ||
matching_boxes_shape = (13, 13, 5, 5) | ||
|
||
# Create model input layers. | ||
image_input = Input(shape=(416, 416, 3)) | ||
boxes_input = Input(shape=(None, 5)) | ||
detectors_mask_input = Input(shape=detectors_mask_shape) | ||
matching_boxes_input = Input(shape=matching_boxes_shape) | ||
|
||
# Create model body. | ||
yolo_model = yolo_body(image_input, len(anchors), len(class_names)) | ||
topless_yolo = Model(yolo_model.input, yolo_model.layers[-2].output) | ||
|
||
if load_pretrained: | ||
# Save topless yolo: | ||
topless_yolo_path = os.path.join('model_data', 'yolo_topless.h5') | ||
if not os.path.exists(topless_yolo_path): | ||
print("CREATING TOPLESS WEIGHTS FILE") | ||
yolo_path = os.path.join('model_data', 'yolo.h5') | ||
model_body = load_model(yolo_path) | ||
model_body = Model(model_body.inputs, model_body.layers[-2].output) | ||
model_body.save_weights(topless_yolo_path) | ||
topless_yolo.load_weights(topless_yolo_path) | ||
|
||
if freeze_body: | ||
for layer in topless_yolo.layers: | ||
layer.trainable = False | ||
final_layer = Conv2D(len(anchors)*(5+len(class_names)), (1, 1), activation='linear')(topless_yolo.output) | ||
|
||
model_body = Model(image_input, final_layer) | ||
|
||
# Place model loss on CPU to reduce GPU memory usage. | ||
with tf.device('/cpu:0'): | ||
# TODO: Replace Lambda with custom Keras layer for loss. | ||
model_loss = Lambda( | ||
yolo_loss, | ||
output_shape=(1, ), | ||
name='yolo_loss', | ||
arguments={'anchors': anchors, | ||
'num_classes': len(class_names)})([ | ||
model_body.output, boxes_input, | ||
detectors_mask_input, matching_boxes_input | ||
]) | ||
|
||
model = Model( | ||
[model_body.input, boxes_input, detectors_mask_input, | ||
matching_boxes_input], model_loss) | ||
|
||
return model_body, model | ||
|
||
def train(model, class_names, anchors, image_data, boxes, detectors_mask, matching_true_boxes, validation_split=0.1): | ||
''' | ||
retrain/fine-tune the model | ||
logs training with tensorboard | ||
saves training weights in current directory | ||
best weights according to val_loss is saved as trained_stage_3_best.h5 | ||
''' | ||
model.compile( | ||
optimizer='adam', loss={ | ||
'yolo_loss': lambda y_true, y_pred: y_pred | ||
}) # This is a hack to use the custom loss function in the last layer. | ||
|
||
|
||
logging = TensorBoard() | ||
checkpoint = ModelCheckpoint("trained_stage_3_best.h5", monitor='val_loss', | ||
save_weights_only=True, save_best_only=True) | ||
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1, mode='auto') | ||
|
||
model.fit([image_data, boxes, detectors_mask, matching_true_boxes], | ||
np.zeros(len(image_data)), | ||
validation_split=validation_split, | ||
batch_size=32, | ||
epochs=5, | ||
callbacks=[logging]) | ||
model.save_weights('trained_stage_1.h5') | ||
|
||
model_body, model = create_model(anchors, class_names, load_pretrained=False, freeze_body=False) | ||
|
||
model.load_weights('trained_stage_1.h5') | ||
|
||
model.compile( | ||
optimizer='adam', loss={ | ||
'yolo_loss': lambda y_true, y_pred: y_pred | ||
}) # This is a hack to use the custom loss function in the last layer. | ||
|
||
|
||
model.fit([image_data, boxes, detectors_mask, matching_true_boxes], | ||
np.zeros(len(image_data)), | ||
validation_split=0.1, | ||
batch_size=8, | ||
epochs=30, | ||
callbacks=[logging]) | ||
|
||
model.save_weights('trained_stage_2.h5') | ||
|
||
model.fit([image_data, boxes, detectors_mask, matching_true_boxes], | ||
np.zeros(len(image_data)), | ||
validation_split=0.1, | ||
batch_size=8, | ||
epochs=30, | ||
callbacks=[logging, checkpoint, early_stopping]) | ||
|
||
model.save_weights('trained_stage_3.h5') | ||
|
||
def draw(model_body, class_names, anchors, image_data, image_set='val', | ||
weights_name='trained_stage_3_best.h5', out_path="output_images", save_all=True): | ||
''' | ||
Draw bounding boxes on image data | ||
''' | ||
if image_set == 'train': | ||
image_data = np.array([np.expand_dims(image, axis=0) | ||
for image in image_data[:int(len(image_data)*.9)]]) | ||
elif image_set == 'val': | ||
image_data = np.array([np.expand_dims(image, axis=0) | ||
for image in image_data[int(len(image_data)*.9):]]) | ||
elif image_set == 'all': | ||
image_data = np.array([np.expand_dims(image, axis=0) | ||
for image in image_data]) | ||
else: | ||
ValueError("draw argument image_set must be 'train', 'val', or 'all'") | ||
# model.load_weights(weights_name) | ||
print(image_data.shape) | ||
model_body.load_weights(weights_name) | ||
|
||
# Create output variables for prediction. | ||
yolo_outputs = yolo_head(model_body.output, anchors, len(class_names)) | ||
input_image_shape = K.placeholder(shape=(2, )) | ||
boxes, scores, classes = yolo_eval( | ||
yolo_outputs, input_image_shape, score_threshold=0.07, iou_threshold=0) | ||
|
||
# Run prediction on overfit image. | ||
sess = K.get_session() # TODO: Remove dependence on Tensorflow session. | ||
|
||
if not os.path.exists(out_path): | ||
os.makedirs(out_path) | ||
for i in range(len(image_data)): | ||
out_boxes, out_scores, out_classes = sess.run( | ||
[boxes, scores, classes], | ||
feed_dict={ | ||
model_body.input: image_data[i], | ||
input_image_shape: [image_data.shape[2], image_data.shape[3]], | ||
K.learning_phase(): 0 | ||
}) | ||
print('Found {} boxes for image.'.format(len(out_boxes))) | ||
print(out_boxes) | ||
|
||
# Plot image with predicted boxes. | ||
image_with_boxes = draw_boxes(image_data[i][0], out_boxes, out_classes, | ||
class_names, out_scores) | ||
# Save the image: | ||
if save_all or (len(out_boxes) > 0): | ||
image = PIL.Image.fromarray(image_with_boxes) | ||
image.save(os.path.join(out_path,str(i)+'.png')) | ||
|
||
# To display (pauses the program): | ||
# plt.imshow(image_with_boxes, interpolation='nearest') | ||
# plt.show() | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
args = argparser.parse_args() | ||
_main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters