Skip to content

Commit

Permalink
Merge pull request allanzelener#26 from shadySource/update_origional
Browse files Browse the repository at this point in the history
Add Retraining Script
  • Loading branch information
allanzelener authored May 24, 2017
2 parents 3d11f1b + a9053a1 commit 8113f8b
Show file tree
Hide file tree
Showing 3 changed files with 342 additions and 1 deletion.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,9 @@ images/*
images/out/*
model_data/*_anchors.txt

# Tensorboard training logs
logs/

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
Expand Down
338 changes: 338 additions & 0 deletions retrain_yolo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
"""
This is a script that can be used to retrain the YOLOv2 model for your own dataset.
"""
import argparse

import os

import matplotlib.pyplot as plt
import numpy as np
import PIL
import tensorflow as tf
from keras import backend as K
from keras.layers import Input, Lambda, Conv2D
from keras.models import load_model, Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping

from yad2k.models.keras_yolo import (preprocess_true_boxes, yolo_body,
yolo_eval, yolo_head, yolo_loss)
from yad2k.utils.draw_boxes import draw_boxes

# Args
argparser = argparse.ArgumentParser(
description="Retrain or 'fine-tune' a pretrained YOLOv2 model for your own data.")

argparser.add_argument(
'-d',
'--data_path',
help="path to numpy data file (.npz) containing np.object array 'boxes' and np.uint8 array 'images'",
default=os.path.join('..', 'DATA', 'underwater_data.npz'))

argparser.add_argument(
'-a',
'--anchors_path',
help='path to anchors file, defaults to yolo_anchors.txt',
default=os.path.join('model_data', 'yolo_anchors.txt'))

argparser.add_argument(
'-c',
'--classes_path',
help='path to classes file, defaults to pascal_classes.txt',
default=os.path.join('..', 'DATA', 'underwater_classes.txt'))

# Default anchor boxes
YOLO_ANCHORS = np.array(
((0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434),
(7.88282, 3.52778), (9.77052, 9.16828)))

def _main(args):
data_path = os.path.expanduser(args.data_path)
classes_path = os.path.expanduser(args.classes_path)
anchors_path = os.path.expanduser(args.anchors_path)

class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)

data = np.load(data_path) # custom data saved as a numpy file.
# has 2 arrays: an object array 'boxes' (variable length of boxes in each image)
# and an array of images 'images'

image_data, boxes = process_data(data['images'], data['boxes'])

anchors = YOLO_ANCHORS

detectors_mask, matching_true_boxes = get_detector_mask(boxes, anchors)

model_body, model = create_model(anchors, class_names)

train(
model,
class_names,
anchors,
image_data,
boxes,
detectors_mask,
matching_true_boxes
)

draw(model_body,
class_names,
anchors,
image_data,
image_set='val', # assumes training/validation split is 0.9
weights_name='trained_stage_3_best.h5',
save_all=False)


def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names

def get_anchors(anchors_path):
'''loads the anchors from a file'''
if os.path.isfile(anchors_path):
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
else:
Warning("Could not open anchors file, using default.")
return YOLO_ANCHORS

def process_data(images, boxes=None):
'''processes the data'''
images = [PIL.Image.fromarray(i) for i in images]
orig_size = np.array([images[0].width, images[0].height])
orig_size = np.expand_dims(orig_size, axis=0)

# Image preprocessing.
processed_images = [i.resize((416, 416), PIL.Image.BICUBIC) for i in images]
processed_images = [np.array(image, dtype=np.float) for image in processed_images]
processed_images = [image/255. for image in processed_images]

if boxes is not None:
# Box preprocessing.
# Original boxes stored as 1D list of class, x_min, y_min, x_max, y_max.
boxes = [box.reshape((-1, 5)) for box in boxes]
# Get extents as y_min, x_min, y_max, x_max, class for comparision with
# model output.
boxes_extents = [box[:, [2, 1, 4, 3, 0]] for box in boxes]

# Get box parameters as x_center, y_center, box_width, box_height, class.
boxes_xy = [0.5 * (box[:, 3:5] + box[:, 1:3]) for box in boxes]
boxes_wh = [box[:, 3:5] - box[:, 1:3] for box in boxes]
boxes_xy = [boxxy / orig_size for boxxy in boxes_xy]
boxes_wh = [boxwh / orig_size for boxwh in boxes_wh]
boxes = [np.concatenate((boxes_xy[i], boxes_wh[i], box[:, 0:1]), axis=1) for i, box in enumerate(boxes)]

for i, boxz in enumerate(boxes): # zero pad for training
if boxz.shape[0] < 6:
zero_padding = np.zeros( (6-boxz.shape[0], 5), dtype=np.float32)
boxes[i] = np.vstack((boxz, zero_padding))

return np.array(processed_images), np.array(boxes)
else:
return np.array(processed_images)

def get_detector_mask(boxes, anchors):
'''
Precompute detectors_mask and matching_true_boxes for training.
Detectors mask is 1 for each spatial position in the final conv layer and
anchor that should be active for the given boxes and 0 otherwise.
Matching true boxes gives the regression targets for the ground truth box
that caused a detector to be active or 0 otherwise.
'''
detectors_mask = [0 for i in range(len(boxes))]
matching_true_boxes = [0 for i in range(len(boxes))]
for i, box in enumerate(boxes):
detectors_mask[i], matching_true_boxes[i] = preprocess_true_boxes(box, anchors, [416, 416])

return np.array(detectors_mask), np.array(matching_true_boxes)

def create_model(anchors, class_names, load_pretrained=True, freeze_body=True):
'''
returns the body of the model and the model
# Params:
load_pretrained: whether or not to load the pretrained model or initialize all weights
freeze_body: whether or not to freeze all weights except for the last layer's
# Returns:
model_body: YOLOv2 with new output layer
model: YOLOv2 with custom loss Lambda layer
'''

detectors_mask_shape = (13, 13, 5, 1)
matching_boxes_shape = (13, 13, 5, 5)

# Create model input layers.
image_input = Input(shape=(416, 416, 3))
boxes_input = Input(shape=(None, 5))
detectors_mask_input = Input(shape=detectors_mask_shape)
matching_boxes_input = Input(shape=matching_boxes_shape)

# Create model body.
yolo_model = yolo_body(image_input, len(anchors), len(class_names))
topless_yolo = Model(yolo_model.input, yolo_model.layers[-2].output)

if load_pretrained:
# Save topless yolo:
topless_yolo_path = os.path.join('model_data', 'yolo_topless.h5')
if not os.path.exists(topless_yolo_path):
print("CREATING TOPLESS WEIGHTS FILE")
yolo_path = os.path.join('model_data', 'yolo.h5')
model_body = load_model(yolo_path)
model_body = Model(model_body.inputs, model_body.layers[-2].output)
model_body.save_weights(topless_yolo_path)
topless_yolo.load_weights(topless_yolo_path)

if freeze_body:
for layer in topless_yolo.layers:
layer.trainable = False
final_layer = Conv2D(len(anchors)*(5+len(class_names)), (1, 1), activation='linear')(topless_yolo.output)

model_body = Model(image_input, final_layer)

# Place model loss on CPU to reduce GPU memory usage.
with tf.device('/cpu:0'):
# TODO: Replace Lambda with custom Keras layer for loss.
model_loss = Lambda(
yolo_loss,
output_shape=(1, ),
name='yolo_loss',
arguments={'anchors': anchors,
'num_classes': len(class_names)})([
model_body.output, boxes_input,
detectors_mask_input, matching_boxes_input
])

model = Model(
[model_body.input, boxes_input, detectors_mask_input,
matching_boxes_input], model_loss)

return model_body, model

def train(model, class_names, anchors, image_data, boxes, detectors_mask, matching_true_boxes, validation_split=0.1):
'''
retrain/fine-tune the model
logs training with tensorboard
saves training weights in current directory
best weights according to val_loss is saved as trained_stage_3_best.h5
'''
model.compile(
optimizer='adam', loss={
'yolo_loss': lambda y_true, y_pred: y_pred
}) # This is a hack to use the custom loss function in the last layer.


logging = TensorBoard()
checkpoint = ModelCheckpoint("trained_stage_3_best.h5", monitor='val_loss',
save_weights_only=True, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1, mode='auto')

model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=validation_split,
batch_size=32,
epochs=5,
callbacks=[logging])
model.save_weights('trained_stage_1.h5')

model_body, model = create_model(anchors, class_names, load_pretrained=False, freeze_body=False)

model.load_weights('trained_stage_1.h5')

model.compile(
optimizer='adam', loss={
'yolo_loss': lambda y_true, y_pred: y_pred
}) # This is a hack to use the custom loss function in the last layer.


model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=0.1,
batch_size=8,
epochs=30,
callbacks=[logging])

model.save_weights('trained_stage_2.h5')

model.fit([image_data, boxes, detectors_mask, matching_true_boxes],
np.zeros(len(image_data)),
validation_split=0.1,
batch_size=8,
epochs=30,
callbacks=[logging, checkpoint, early_stopping])

model.save_weights('trained_stage_3.h5')

def draw(model_body, class_names, anchors, image_data, image_set='val',
weights_name='trained_stage_3_best.h5', out_path="output_images", save_all=True):
'''
Draw bounding boxes on image data
'''
if image_set == 'train':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data[:int(len(image_data)*.9)]])
elif image_set == 'val':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data[int(len(image_data)*.9):]])
elif image_set == 'all':
image_data = np.array([np.expand_dims(image, axis=0)
for image in image_data])
else:
ValueError("draw argument image_set must be 'train', 'val', or 'all'")
# model.load_weights(weights_name)
print(image_data.shape)
model_body.load_weights(weights_name)

# Create output variables for prediction.
yolo_outputs = yolo_head(model_body.output, anchors, len(class_names))
input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = yolo_eval(
yolo_outputs, input_image_shape, score_threshold=0.07, iou_threshold=0)

# Run prediction on overfit image.
sess = K.get_session() # TODO: Remove dependence on Tensorflow session.

if not os.path.exists(out_path):
os.makedirs(out_path)
for i in range(len(image_data)):
out_boxes, out_scores, out_classes = sess.run(
[boxes, scores, classes],
feed_dict={
model_body.input: image_data[i],
input_image_shape: [image_data.shape[2], image_data.shape[3]],
K.learning_phase(): 0
})
print('Found {} boxes for image.'.format(len(out_boxes)))
print(out_boxes)

# Plot image with predicted boxes.
image_with_boxes = draw_boxes(image_data[i][0], out_boxes, out_classes,
class_names, out_scores)
# Save the image:
if save_all or (len(out_boxes) > 0):
image = PIL.Image.fromarray(image_with_boxes)
image.save(os.path.join(out_path,str(i)+'.png'))

# To display (pauses the program):
# plt.imshow(image_with_boxes, interpolation='nearest')
# plt.show()



if __name__ == '__main__':
args = argparser.parse_args()
_main(args)
2 changes: 1 addition & 1 deletion yad2k/models/keras_yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def yolo_body(inputs, num_anchors, num_classes):
DarknetConv2D_BN_Leaky(1024, (3, 3)),
DarknetConv2D_BN_Leaky(1024, (3, 3)))(darknet.output)

conv13 = darknet.get_layer('leaky_re_lu_13').output
conv13 = darknet.layers[43].output
conv21 = DarknetConv2D_BN_Leaky(64, (1, 1))(conv13)
# TODO: Allow Keras Lambda to use func arguments for output_shape?
conv21_reshaped = Lambda(
Expand Down

0 comments on commit 8113f8b

Please sign in to comment.