Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
Conda environment
conda create --name <env> --file requirements.txt
or
conda env create -f conda_graphy_environment.yml
conda activate graphy
splits/
: splits that we used, taking from GEO-GCN repository.main.py
: script with inline arguments for running the experiments.main_scalable.py
: script with inline arguments for running large experiments.models.py
: script with our proposed architecture.pump.py
: implementation of the proposed pump.utils.py
: extra functions used for the experiments.
python main.py --dataset texas --hidden_channels 64 --dropout 0.2 --lr 0.03 --n_layers 20 --epochs 700 --cuda cpu
python main.py --dataset wisconsin --hidden_channels 64 --dropout 0.5 --lr 0.03 --n_layers 5 --epochs 700 --cuda cpu
python main.py --dataset cornell --hidden_channels 128 --dropout 0.5 --lr 0.03 --n_layers 5 --wd 0.001 --epochs 700 --cuda cpu