forked from h2oai/h2o-2
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cd94a36
commit 69c1d61
Showing
1 changed file
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
## Install H2O R package (same version as H2O Server) | ||
if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } | ||
if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") } | ||
install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-mirzakhani/2/R", getOption("repos")))) | ||
|
||
## Load H2O R libary | ||
library(h2o) | ||
|
||
## Connect to H2O Server | ||
h2oServer <- h2o.init(ip="localhost", port=8996) | ||
|
||
|
||
|
||
## HIGGS | ||
|
||
## Parse Higgs dataset | ||
higgs_hex <- h2o.importFile(h2oServer, "higgs.100k.csv.gz") | ||
summary(higgs_hex) | ||
dim(higgs_hex) | ||
|
||
## Split data into train/validation and store under user-given keys in the H2O Store | ||
random <- h2o.runif(higgs_hex, seed = 123456789) | ||
higgs_train_hex <- h2o.assign(higgs_hex[random < .75,], "higgs_train_hex") | ||
higgs_validation_hex <- h2o.assign(higgs_hex[random >= .75,], "higgs_validation_hex") | ||
|
||
## Clean up temporaries | ||
h2o.rm(h2oServer, grep(pattern = "Last.value", x = h2o.ls(h2oServer)$Key, value = TRUE)) | ||
|
||
|
||
## Run DL model | ||
response = 1 | ||
low_level_predictors = c(2:22) | ||
high_level_predictors = c(23:29) | ||
|
||
help(h2o.deeplearning) | ||
|
||
ll_model <- h2o.deeplearning(data=higgs_train_hex, validation=higgs_validation_hex, | ||
x=low_level_predictors, y=response) | ||
ll_model | ||
|
||
hl_model <- h2o.deeplearning(data=higgs_train_hex, validation=higgs_validation_hex, | ||
x=high_level_predictors, y=response) | ||
hl_model | ||
|
||
ll_hl_model <- h2o.deeplearning(data=higgs_train_hex, validation=higgs_validation_hex, | ||
x=c(low_level_predictors,high_level_predictors), y=response) | ||
ll_hl_model | ||
|
||
## Example how to make and export predictions | ||
predictions <- h2o.predict(hl_model, higgs_validation_hex) | ||
head(predictions) | ||
h2o.exportFile(data=predictions, path="predictions") | ||
|
||
|
||
|
||
## ADULT | ||
|
||
## Run grid search on Adult | ||
adult_hex <- h2o.importFile(h2oServer, "adult.gz") | ||
dim(adult_hex) | ||
summary(adult_hex) | ||
|
||
## Set column names manually | ||
colnames(adult_hex) <- c("age","workclass","fnlwgt","education","education-num","marital-status", | ||
"occupation","relationship","race","sex","capital-gain","capital-loss", | ||
"hours-per-week","native-country","income") | ||
summary(adult_hex) | ||
|
||
## Turn age into a categorical factor | ||
adult_hex$age <- as.factor(adult_hex$age) | ||
summary(adult_hex) | ||
|
||
pred = 1:14 | ||
adult_grid <- h2o.deeplearning(data=adult_hex, x=pred, y="income", | ||
activation=c("Rectifier"), l1=c(0,1e-6), l2=0, | ||
hidden=list(c(20,20,20), c(50,50)), epochs=10) | ||
|
||
## Find the best model (based on training error, since no validation dataset specified) | ||
best_model <- adult_grid@model[[1]] | ||
best_model | ||
best_model@model$params$activation | ||
best_model@model$params$l1 | ||
best_model@model$params$hidden | ||
|
||
|
||
## Compare to GBM | ||
gbm_model <- h2o.gbm(data=adult_hex, x=pred, y=resp) | ||
gbm_model | ||
|
||
|
||
|
||
## MNIST | ||
## World-record parameters at http://learn.h2o.ai/content/hands-on_training/deep_learning.html | ||
|
||
mnist_train_hex <- h2o.importFile(h2oServer, "mnist.train.csv.gz") | ||
mnist_test_hex <- h2o.importFile(h2oServer, "mnist.test.csv.gz") | ||
dim(mnist_train_hex) | ||
dim(mnist_test_hex) | ||
|
||
mnist_model <- h2o.deeplearning(data=mnist_train_hex, validation=mnist_test_hex, hidden=c(20,20,20), epochs=1, x=1:784, y=785) | ||
mnist_model | ||
|
||
|
||
## For more examples, see http://learn.h2o.ai/content/ |