Skip to content

Commit

Permalink
[bugfix] Fix the deterministic of kernel test and add documentation. (d…
Browse files Browse the repository at this point in the history
…mlc#1799)

* upd

* upd

* upd

* relax

* relax too

* upd
  • Loading branch information
yzh119 authored Jul 13, 2020
1 parent f25b1a0 commit bc209bf
Show file tree
Hide file tree
Showing 9 changed files with 265 additions and 9 deletions.
229 changes: 229 additions & 0 deletions docs/source/api/python/backend.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
.. _apibackend:

.. currentmodule:: dgl.backend

dgl.backend
==================================

Frame-agnostic operators for message passing on graphs.

GSpMM functions
---------------

Generalized Sparse-Matrix Dense-Matrix Multiplication functions.
It *fuses* two steps into one kernel.

1. Computes messages by add/sub/mul/div source node and edge features,
or copy node features to edges.
2. Aggregate the messages by sum/max/min as the features on destination nodes.

Our implementation supports tensors on CPU/GPU in PyTorch/MXNet/Tensorflow
as input. All operators are equipped with autograd (computing the input gradients
given output gradient) and broadcasting (if the feature shape of operands do not
match, we first broadcast them to the same shape, then applies the binary
operators). Our broadcast semantics follows NumPy, please see
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
for more details.

What do we mean by *fuses* is that the messages are not materialized on edges,
instead we compute the result on destination nodes directly, thus saving memory
cost. The space complexity of GSpMM operators is :math:`O(|N|D)` where :math:`|N|`
refers to the number of nodes in the graph, and :math:`D` refers to the feature
size (:math:`D=\prod_{i=1}^{N}D_i` if your feature is a multi-dimensional tensor).

The following is an example showing how GSpMM works (we use PyTorch as the backend
here, you can enjoy the same convenience on other frameworks by similar usage):

>>> import dgl
>>> import torch as th
>>> import dgl.backend as F
>>> g = dgl.graph(([0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2])) # 3 nodes, 6 edges
>>> x = th.ones(3, 2, requires_grad=True)
>>> x
tensor([[1., 1.],
[1., 1.],
[1., 1.]], requires_grad=True)
>>> y = th.arange(1, 13).float().view(6, 2).requires_grad_()
tensor([[ 1., 2.],
[ 3., 4.],
[ 5., 6.],
[ 7., 8.],
[ 9., 10.],
[11., 12.]], requires_grad=True)
>>> out_1 = F.u_mul_e_sum(g, x, y)
>>> out_1 # (10, 12) = ((1, 1) * (3, 4)) + ((1, 1) * (7, 8))
tensor([[ 1., 2.],
[10., 12.],
[25., 28.]], grad_fn=<GSpMMBackward>)
>>> out_1.sum().backward()
>>> x.grad
tensor([[12., 15.],
[18., 20.],
[12., 13.]])
>>> y.grad
tensor([[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]])
>>> out_2 = F.copy_u_sum(g, x)
>>> out_2
tensor([[1., 1.],
[2., 2.],
[3., 3.]], grad_fn=<GSpMMBackward>)
>>> out_3 = F.u_add_e_max(g, x, y)
>>> out_3
tensor([[ 2., 3.],
[ 8., 9.],
[12., 13.]], grad_fn=<GSpMMBackward>)
>>> y1 = th.rand(6, 4, 2, requires_grad=True) # test broadcast
>>> F.u_mul_e_sum(g, x, y1).shape # (2,), (4, 2) -> (4, 2)
torch.Size([3, 4, 2])

For all operators, the input graph could either be a homograph or a bipartite
graph.

.. autosummary::
:toctree: ../../generated/

u_add_e_sum
u_sub_e_sum
u_mul_e_sum
u_div_e_sum
u_add_e_max
u_sub_e_max
u_mul_e_max
u_div_e_max
u_add_e_min
u_sub_e_min
u_mul_e_min
u_div_e_min
copy_u_sum
copy_e_sum
copy_u_max
copy_e_max
copy_u_min
copy_e_min

GSDDMM functions
----------------

Generalized Sampled Dense-Dense Matrix Multiplication.
It computes edge features by add/sub/mul/div/dot features on source/destination
nodes or edges.

Like GSpMM, our implementation supports tensors on CPU/GPU in
PyTorch/MXNet/Tensorflow as input. All operators are equipped with autograd and
broadcasting.

The memory cost of GSDDMM is :math:`O(|E|D)` where :math:`|E|` refers to the number
of edges in the graph while :math:`D` refers to the feature size.

Note that we support ``dot`` operator, which semantically is the same as reduce
the last dimension by sum to the result of ``mul`` operator. However, the ``dot``
is more memory efficient because it *fuses* ``mul`` and sum reduction, which is
critical in the cases while the feature size on last dimension is non-trivial
(e.g. multi-head attention in Transformer-like models).

The following is an example showing how GSDDMM works:

>>> import dgl
>>> import torch as th
>>> import dgl.backend as F
>>> g = dgl.graph(([0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2])) # 3 nodes, 6 edges
>>> x = th.ones(3, 2, requires_grad=True)
>>> x
tensor([[1., 1.],
[1., 1.],
[1., 1.]], requires_grad=True)
>>> y = th.arange(1, 7).float().view(3, 2).requires_grad_()
>>> y
tensor([[1., 2.],
[3., 4.],
[5., 6.]], requires_grad=True)
>>> e = th.ones(6, 1, 2, requires_grad=True) * 2
tensor([[[2., 2.]],
[[2., 2.]],
[[2., 2.]],
[[2., 2.]],
[[2., 2.]],
[[2., 2.]]], grad_fn=<MulBackward0>)
>>> out1 = F.u_div_v(g, x, y)
tensor([[1.0000, 0.5000],
[0.3333, 0.2500],
[0.2000, 0.1667],
[0.3333, 0.2500],
[0.2000, 0.1667],
[0.2000, 0.1667]], grad_fn=<GSDDMMBackward>)
>>> out1.sum().backward()
>>> x.grad
tensor([[1.5333, 0.9167],
[0.5333, 0.4167],
[0.2000, 0.1667]])
>>> y.grad
tensor([[-1.0000, -0.2500],
[-0.2222, -0.1250],
[-0.1200, -0.0833]])
>>> out2 = F.e_sub_v(g, e, y)
>>> out2
tensor([[[ 1., 0.]],
[[-1., -2.]],
[[-3., -4.]],
[[-1., -2.]],
[[-3., -4.]],
[[-3., -4.]]], grad_fn=<GSDDMMBackward>)
>>> out3 = F.copy_v(g, y)
>>> out3
tensor([[1., 2.],
[3., 4.],
[5., 6.],
[3., 4.],
[5., 6.],
[5., 6.]], grad_fn=<GSDDMMBackward>)
>>> out4 = F.u_dot_v(g, x, y)
>>> out4 # the last dimension was reduced to size 1.
tensor([[ 3.],
[ 7.],
[11.],
[ 7.],
[11.],
[11.]], grad_fn=<GSDDMMBackward>)

.. autosummary::
:toctree: ../../generated/

u_add_v
u_sub_v
u_mul_v
u_dot_v
u_div_v
u_add_e
u_sub_e
u_mul_e
u_dot_e
u_div_e
e_add_v
e_sub_v
e_mul_v
e_dot_v
e_div_v
v_add_u
v_sub_u
v_mul_u
v_dot_u
v_div_u
e_add_u
e_sub_u
e_mul_u
e_dot_u
e_div_u
v_add_e
v_sub_e
v_mul_e
v_dot_e
v_div_e
copy_u
copy_v

Like GSpMM, GSDDMM operators support both homograph and bipartite graph.
1 change: 1 addition & 0 deletions docs/source/api/python/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ API Reference
batch_heterograph
nn
init
backend
function
traversal
propagate
Expand Down
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ a useful manual for in-depth developers.

api/python/graph
api/python/heterograph
api/python/backend
api/python/readout
api/python/batch_heterograph
api/python/nn
Expand Down
9 changes: 5 additions & 4 deletions python/dgl/backend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,9 @@ def _gen_spmm_func(binary_op, reduce_op):
name = "u_{}_e_{}".format(binary_op, reduce_op)
docstring = """Generalized SpMM function.
It fuses two steps into one kernel.
(1) Computes messages by {} source node and edge features.
(2) Aggregate the messages by {} as the features on destination nodes.
1. Computes messages by {} source node and edge features.
2. Aggregate the messages by {} as the features on destination nodes.
Parameters
----------
Expand Down Expand Up @@ -179,7 +180,7 @@ def copy_u(g, x):
Notes
-----
This function supports autograd (computing input gradients given the output gradient).
""".format(_notes_docstring)
"""
return gsddmm(g, 'copy_lhs', x, None)

def copy_v(g, x):
Expand All @@ -200,7 +201,7 @@ def copy_v(g, x):
Notes
-----
This function supports autograd (computing input gradients given the output gradient).
""".format(_notes_docstring)
"""
return gsddmm(g, 'copy_rhs', None, x)

def load_backend(mod_name):
Expand Down
4 changes: 4 additions & 0 deletions tests/backend/backend_unittest.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,10 @@ def dot(a, b):
"""Compute Dot between a and b"""
pass

def abs(a):
"""Compute the absolute value of a"""
pass

###############################################################################
# Tensor functions used *only* on index tensor
# ----------------
Expand Down
3 changes: 3 additions & 0 deletions tests/backend/mxnet/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,3 +74,6 @@ def matmul(a, b):

def dot(a, b):
return nd.sum(mul(a, b), axis=-1)

def abs(a):
return nd.abs(a)
3 changes: 3 additions & 0 deletions tests/backend/pytorch/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,3 +68,6 @@ def matmul(a, b):

def dot(a, b):
return sum(mul(a, b), dim=-1)

def abs(a):
return a.abs()
3 changes: 3 additions & 0 deletions tests/backend/tensorflow/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,3 +96,6 @@ def matmul(a, b):

def dot(a, b):
return sum(mul(a, b), dim=-1)

def abs(a):
return tf.abs(a)
21 changes: 16 additions & 5 deletions tests/compute/test_sparse.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
from dgl.backend import gspmm, gsddmm
from utils import parametrize_dtype
import dgl
import random
import pytest
import networkx as nx
import backend as F
import numpy as np

random.seed(42)
np.random.seed(42)
dgl.random.seed(42)

udf_msg = {
'add': lambda edges: {'m': edges.src['x'] + edges.data['w']},
Expand Down Expand Up @@ -133,14 +134,24 @@ def test_spmm(g, shp, msg, reducer, index_dtype):
g.update_all(udf_msg[msg], udf_reduce[reducer])
if g.number_of_edges() > 0:
v1 = F.gather_row(g.dstdata['v'], non_degree_indices)
assert F.allclose(v, v1, rtol=1e-3, atol=1e-3)
assert F.allclose(v, v1)
print('forward passed')

F.backward(F.reduce_sum(v1))
if msg != 'copy_rhs':
assert F.allclose(F.grad(g.srcdata['x']), grad_u)
if reducer in ['min', 'max']: # there might be some numerical errors
rate = F.reduce_sum(F.abs(F.grad(g.srcdata['x']) - grad_u)) /\
F.reduce_sum(F.abs(grad_u))
assert F.as_scalar(rate) < 1e-3, rate
else:
assert F.allclose(F.grad(g.srcdata['x']), grad_u)
if msg != 'copy_lhs':
assert F.allclose(F.grad(g.edata['w']), grad_e)
if reducer in ['min', 'max']:
rate = F.reduce_sum(F.abs(F.grad(g.edata['w']) - grad_e)) /\
F.reduce_sum(F.abs(grad_e))
assert F.as_scalar(rate) < 1e-3, rate
else:
assert F.allclose(F.grad(g.edata['w']), grad_e)
print('backward passed')

g.srcdata.pop('x')
Expand Down Expand Up @@ -208,7 +219,7 @@ def test_sddmm(g, shp, lhs_target, rhs_target, msg, index_dtype):
g.apply_edges(udf_apply_edges[msg_func])
if g.number_of_edges() > 0:
e1 = g.edata['m']
assert F.allclose(e, e1, rtol=1e-3, atol=1e-3)
assert F.allclose(e, e1)
print('forward passed')

F.backward(F.reduce_sum(e1))
Expand Down

0 comments on commit bc209bf

Please sign in to comment.