Skip to content

AmandaLiSP/DeepWMA

 
 

Repository files navigation

DeepWMA (Deep White Matter Analysis)

This code implements a deep learning tractography segmentation method (DeepWMA) that allows fast and consistent white matter fiber tract identification, as described in the following paper:

Fan Zhang, Suheyla Cetin Karayumak, Nico Hoffmann, Yogesh Rathi, Alexandra J. Golby, and Lauren J. O’Donnell. 
Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation.
Medical Image Analysis 65 (2020): 101761

Example

See the following script for instructions:

sh run_DeepWMA.sh

Please cite the following papers:

Fan Zhang, Suheyla Cetin Karayumak, Nico Hoffmann, Yogesh Rathi, Alexandra J. Golby, and Lauren J. O’Donnell. 
Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation.
Medical Image Analysis 65 (2020): 101761

Fan Zhang, Ye Wu, Isaiah Norton, Yogesh Rathi, Nikos Makris and Lauren J. O’Donnell. 
An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. 
NeuroImage, 2018 (179): 429-447

Fan Zhang, Thomas Noh, Parikshit Juvekar, Sarah F Frisken, Laura Rigolo, Isaiah Norton, Tina Kapur, Sonia Pujol, William Wells III, Alex Yarmarkovich, Gordon Kindlmann, Demian Wassermann, Raul San Jose Estepar, Yogesh Rathi, Ron Kikinis, Hans J Johnson, Carl-Fredrik Westin, Steve Pieper, Alexandra J Golby, Lauren J O'Donnell. 
SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization. 
JCO Clinical Cancer Informatics 4, e299-309, 2020.

Isaiah Norton, Walid Ibn Essayed, Fan Zhang, Sonia Pujol, Alex Yarmarkovich, Alexandra J. Golby, Gordon Kindlmann, Demian Wassermann, Raul San Jose Estepar, Yogesh Rathi, Steve Pieper, Ron Kikinis, Hans J. Johnson, Carl-Fredrik Westin and Lauren J. O'Donnell. 
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Research 77(21), e101-e103, 2017.

About

Deep White Matter Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.6%
  • Cython 8.0%
  • Shell 0.4%