Skip to content

AmrSakkary/boilerplate-mean-variance-standard-deviation-calculator

 
 

Repository files navigation

Assignment

Create a function named calculate() in mean_var_std.py that uses Numpy to output the mean, variance, standard deviation, max, min, and sum of the rows, columns, and elements in a 3 x 3 matrix.

The input of the function should be a list containing 9 digits. The function should convert the list into a 3 x 3 Numpy array, and then return a dictionary containing the mean, variance, standard deviation, max, min, and sum along both axes and for the flattened matrix.

The returned dictionary should follow this format:

{
  'mean': [axis1, axis2, flattened],
  'variance': [axis1, axis2, flattened],
  'standard deviation': [axis1, axis2, flattened],
  'max': [axis1, axis2, flattened],
  'min': [axis1, axis2, flattened],
  'sum': [axis1, axis2, flattened]
}

If a list containing less than 9 elements is passed into the function, it should raise a ValueError exception with the message: "List must contain nine numbers." The values in the returned dictionary should be lists and not Numpy arrays.

For example, calculate([0,1,2,3,4,5,6,7,8]) should return:

{
  'mean': [[3.0, 4.0, 5.0], [1.0, 4.0, 7.0], 4.0], 
  'variance': [[6.0, 6.0, 6.0], [0.6666666666666666, 0.6666666666666666, 0.6666666666666666], 6.666666666666667], 
  'standard deviation': [[2.449489742783178, 2.449489742783178, 2.449489742783178], [0.816496580927726, 0.816496580927726, 0.816496580927726], 2.581988897471611],
  'max': [[6, 7, 8], [2, 5, 8], 8],
  'min': [[0, 1, 2], [0, 3, 6], 0],
  'sum': [[9, 12, 15], [3, 12, 21], 36]
}

The unit tests for this project are in test_module.py.

Development

For development, you can use main.py to test your calculate() function. Click the "run" button and main.py will run.

Testing

We imported the tests from test_module.py to main.py for your convenience. The tests will run automatically whenever you hit the "run" button.

Submitting

Copy your project's URL and submit it to freeCodeCamp.

About

first freecodecamp project for Data Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 83.0%
  • Python 17.0%