Skip to content

AndChenCM/attfppost

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reducing Overconfident Errors in Molecular Property Classification using Posterior Network

This repository is the offical implementation of Reducing Overconfident Errors in Molecular Property Classification using Posterior Network.

Setup

conda create -n postnet python==3.9
conda activate postnet
conda install -c conda-forge rdkit
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install -c conda-forge tqdm
conda install -c conda-forge dgllife
conda install -c dglteam dgl-cuda11.1
pip install typed-argument-parser
conda install -c conda-forge mordred
pip install pyro-ppl

Reproducing

You can reproduce the results presented in our paper quickly by running the corresponding Notebooks in the notebooks folder.

Data

All the data used to generate the experimental results have been included in the data folder

Trained model checkpoints

We provide the trained model checkpoints in the trained_model folder. You can find them there and easily use these checkpoints by running the single_molecule_prediction.ipynb Jupyter Notebook file.

Supported Predictions

  • hERG: Whether to inhibit hERG
  • BBB: Whether it can cross the blood-brain barrier
  • CYP2C9: Whether to inhibit CYP2C9
  • CYP3A4: Whether to inhibit CYP3A4
  • Pgp-inhibitor: Whether to inhibit P-gp

Future Plans

  • Pgp-substrate: Whether it is a P-gp substrate

Usage

open single_molecule_prediction.ipynb

smiles = 'CCCSC1=CC2=C(NC(NC(=O)OC)=N2)C=C1' # input your molecule
task_name = 'Pgp-inhibitor' # choose your prediction task

single_molecule_prediction(smiles, task_name)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published