Skip to content

Commit

Permalink
Adding chat completion to qdrant and acs
Browse files Browse the repository at this point in the history
  • Loading branch information
MarkWme committed Sep 14, 2023
1 parent d89f1b4 commit 73acfed
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 8 deletions.
15 changes: 11 additions & 4 deletions labs/03-orchestration/03-Qdrant/qdrant.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -75,15 +75,16 @@
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import AzureOpenAI\n",
"from langchain.chat_models import AzureChatOpenAI\n",
"\n",
"# Create an Embeddings Instance of Azure OpenAI\n",
"embeddings = OpenAIEmbeddings(\n",
" deployment=embedding_name,\n",
" chunk_size=1\n",
") \n",
"\n",
"# Create a Completion Instance of Azure OpenAI\n",
"llm = AzureOpenAI(\n",
"# Create a Chat Completion Instance of Azure OpenAI\n",
"llm = AzureChatOpenAI(\n",
" openai_api_type = openai_api_type,\n",
" openai_api_version = openai_api_version,\n",
" openai_api_base = openai_api_base,\n",
Expand Down Expand Up @@ -227,7 +228,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm = AzureOpenAI(\n",
"llm = AzureChatOpenAI(\n",
" openai_api_type = openai_api_type,\n",
" openai_api_version = openai_api_version,\n",
" openai_api_base = openai_api_base,\n",
Expand All @@ -236,14 +237,20 @@
" model_name=\"gpt-35-turbo\"\n",
")\n",
"chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=docsearch.vectorstore.as_retriever(), input_key=\"question\", return_source_documents=True)\n",
"\n",
"query = \"Do you have a column called popularity?\"\n",
"print (\"First query: \" + query)\n",
"response = chain({\"question\": query})\n",
"print(response['result'])\n",
"print (\"Source documents for first query\")\n",
"print(response['source_documents'])\n",
"print (\"\\n\")\n",
"\n",
"query = \"What is the movie with the highest popularity?\"\n",
"print (\"Second query: \" + query)\n",
"response = chain({\"question\": query})\n",
"print(response['result'])\n",
"print(\"Source Documents for second query\")\n",
"print(response['source_documents'])"
]
},
Expand Down Expand Up @@ -324,7 +331,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.5"
},
"orig_nbformat": 4
},
Expand Down
9 changes: 5 additions & 4 deletions labs/03-orchestration/04-ACS/acs.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# 03 - Langchain with Azure Cognitive Search\n",
"# 04 - Langchain with Azure Cognitive Search\n",
"\n",
"In this lab, we will do a deeper dive around the Azure Cognitive Search (ACS) vector store and different ways to interact with it."
]
Expand All @@ -29,7 +29,7 @@
"source": [
"RG=\"azure-cognitive-search-rg\"\n",
"LOC=\"westeurope\"\n",
"NAME=\"acs-vectorstore-<INITIALS>\"\n",
"NAME=\"acs-vectorstore-mtjw\"\n",
"!az group create --name $RG --location $LOC\n",
"!az search service create -g $RG -n $NAME -l $LOC --sku Basic --partition-count 1 --replica-count 1"
]
Expand Down Expand Up @@ -122,6 +122,7 @@
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.llms import AzureOpenAI\n",
"from langchain.chat_models import AzureChatOpenAI\n",
"\n",
"# Create an Embeddings Instance of Azure OpenAI\n",
"embeddings = OpenAIEmbeddings(\n",
Expand All @@ -130,7 +131,7 @@
") \n",
"\n",
"# Create a Completion Instance of Azure OpenAI\n",
"llm = AzureOpenAI(\n",
"llm = AzureChatOpenAI(\n",
" openai_api_type = openai_api_type,\n",
" openai_api_version = openai_api_version,\n",
" openai_api_base = openai_api_base,\n",
Expand Down Expand Up @@ -322,7 +323,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.5"
},
"orig_nbformat": 4
},
Expand Down

0 comments on commit 73acfed

Please sign in to comment.