-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
41 changed files
with
88,576 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
import random | ||
import time | ||
import threading | ||
|
||
|
||
class pla: | ||
def __init__(self, root_path, train_file, valid_file, learning_rate=1.0, it=10000): | ||
self.root = None | ||
self.rootPath = root_path | ||
self.trainFile = root_path + train_file | ||
self.validFile = root_path + valid_file | ||
self.trainDataFeature, self.trainDataLabel = self.__load_data('train', ex=True) | ||
self.validDataFeature, self.validDataLabel = self.__load_data('valid', ex=True) | ||
self.predict = [] | ||
self.accuracy = None | ||
self.learningRate = learning_rate | ||
self.max_iter = it | ||
self.it = 0 | ||
self.__w = self.__ini_mat(len(self.trainDataFeature[0]), _func='0') | ||
self.__accList = [] | ||
self.__argsList = [] | ||
|
||
def __load_data(self, _type, ex=False): | ||
data = None | ||
if _type == 'train': | ||
with open(self.trainFile) as file: | ||
data = [i.replace('\n', '').split(',') for i in file.readlines()] | ||
elif _type == 'valid': | ||
with open(self.validFile) as file: | ||
data = [i.replace('\n', '').split(',') for i in file.readlines()] | ||
|
||
data = [[float(f) for f in d] for d in data] | ||
if ex: | ||
for i in data: | ||
i.insert(0, 1.0) | ||
return [i[:-1] for i in data], [1 if i[-1] == 1 else -1 for i in data] | ||
|
||
@staticmethod | ||
def __ini_mat(l, _func='0'): | ||
if _func == '0': | ||
w = [0 for i in range(l)] | ||
elif _func == 'random': | ||
w = [random.uniform(0, 1) for i in range(l)] | ||
else: | ||
w = [] | ||
return w | ||
|
||
@staticmethod | ||
def __mult(a, b): | ||
if len(a) != len(b): | ||
raise ValueError('length a != length b') | ||
res = sum([a[i] * b[i] for i in range(len(a))]) | ||
return res | ||
|
||
@staticmethod | ||
def __sign(x): | ||
if x == 0: | ||
return x | ||
return -1 if x < 0 else 1 | ||
|
||
def __run_1_epoch(self, _type): | ||
if _type == 'train': | ||
predict = [self.__sign(self.__mult(self.__w, feature)) for feature in self.trainDataFeature] | ||
else: | ||
predict = [self.__sign(self.__mult(self.__w, feature)) for feature in self.validDataFeature] | ||
return predict | ||
|
||
def __optimize(self, x, y): | ||
self.__w = [self.__w[i] + self.learningRate * y * x[i] for i in range(len(self.__w))] | ||
|
||
def __show_progress(self): | ||
while self.it != self.max_iter - 1: | ||
print('\rRunning Epoch {}/{}'.format(self.it, self.max_iter), end='', flush=True) | ||
time.sleep(3) | ||
|
||
def test(self): | ||
t = threading.Thread(target=self.__show_progress) | ||
t.setDaemon(True) | ||
t.start() | ||
for self.it in range(1, self.max_iter + 1): | ||
if self.it % 100 == 0: | ||
self.valid() | ||
self.__accList.append(self.get_accuracy()) | ||
predict = self.__run_1_epoch('train') | ||
flag = True | ||
for j in range(len(predict)): | ||
if predict[j] != self.trainDataLabel[j]: | ||
flag = False | ||
self.__optimize(self.trainDataFeature[j], self.trainDataLabel[j]) | ||
if flag: | ||
break | ||
print('\rTraining Finished', flush=True) | ||
|
||
def train(self): | ||
t = threading.Thread(target=self.__show_progress) | ||
t.setDaemon(True) | ||
t.start() | ||
for self.it in range(1, self.max_iter + 1): | ||
self.valid() | ||
self.__accList.append(self.get_accuracy()) | ||
self.__argsList.append(self.__w) | ||
predict = self.__run_1_epoch('train') | ||
flag = True | ||
for j in range(len(predict)): | ||
if predict[j] != self.trainDataLabel[j]: | ||
flag = False | ||
self.__optimize(self.trainDataFeature[j], self.trainDataLabel[j]) | ||
break | ||
if flag: | ||
break | ||
self.__w = self.__argsList[self.__accList.index(max(self.__accList))] | ||
print('\rTraining Finished', flush=True) | ||
|
||
def valid(self): | ||
self.predict = self.__run_1_epoch('valid') | ||
|
||
def get_accuracy(self): | ||
hit = sum([(1 if self.predict[i] == self.validDataLabel[i] else 0) for i in range(len(self.predict))]) | ||
self.accuracy = hit / len(self.predict) | ||
return self.accuracy | ||
|
||
def get_w(self): | ||
return self.__w | ||
|
||
def get_accl(self): | ||
return self.__accList | ||
|
||
|
||
def run_10_cross_validation(): | ||
acc = [] | ||
for i in range(10): | ||
print('Cross Validation {} Now Running'.format(i)) | ||
model = pla('./data/', 'train_{}.csv'.format(i), 'valid_{}.csv'.format(i), it=1000) | ||
model.train() | ||
model.valid() | ||
acc.append(model.get_accuracy()) | ||
print(acc) | ||
print(sum(acc) / len(acc)) | ||
|
||
|
||
if __name__ == '__main__': | ||
model = pla('./data/', 'train_0.csv', 'valid_0.csv', it=100,learning_rate=1) | ||
model.train() | ||
model.valid() | ||
print(model.get_accuracy()) | ||
print(model.get_w()) | ||
print(model.get_accl()) | ||
# run_10_cross_validation() | ||
# 21258 | ||
# 26198 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import random | ||
|
||
|
||
def cut(path, _file): | ||
with open(path + _file) as file: | ||
data = file.readlines() | ||
data[-1] += '\n' | ||
random.shuffle(data) | ||
data_group = [] | ||
for i in range(9): | ||
data_group.append(data[len(data) // 10 * i:len(data) // 10 * (i + 1)]) | ||
data_group.append(data[len(data) // 10 * 9:]) | ||
for i in range(10): | ||
with open(path + '/train_{}.csv'.format(i), 'w') as troutput: | ||
with open(path + '/valid_{}.csv'.format(i), 'w') as vaoutput: | ||
for j in range(10): | ||
if i == j: | ||
for d in data_group[j]: | ||
vaoutput.write(d) | ||
else: | ||
for d in data_group[j]: | ||
troutput.write(d) | ||
|
||
|
||
if __name__ == '__main__': | ||
cut(r'./data/', 'train.csv') |
Oops, something went wrong.