Skip to content

BaderLab/APA-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

APA-Net

APA-Net is a deep learning model designed for learning context specific APA usage. This guide covers the steps necessary to set up and run APA-Net.

Installation

Before running APA-Net, ensure you have Python installed on your system. Clone this repository to your local machine:

git clone https://github.com/BaderLab/APA-Net.git
cd APA-Net

pip install .

Usage

To train the APA-Net model, use the train_script.py script with the necessary command-line arguments:

python train_script.py \
--train_data "/path/to/train_data.npy" \
--train_seq "/path/to/train_seq.npy" \
--valid_data "/path/to/valid_data.npy" \
--valid_seq "/path/to/valid_seq.npy" \
--profiles "/path/to/celltype_profiles.tsv" \
--modelfile "/path/to/model_output.pt" \
--batch_size 64 \
--epochs 200 \
--project_name "APA-Net_Training" \
--device "cuda:1" \
--use_wandb "True"

Arguments

  • --train_data: Path to the training data file.
  • --train_seq: Path to the training sequence data file.
  • --valid_data: Path to the validation data file.
  • --valid_seq: Path to the validation sequence data file.
  • --profiles: Path to the cell type profiles file.
  • --modelfile: Path where the trained model will be saved.
  • --batch_size: Batch size for training (default: 64).
  • --epochs: Number of training epochs (default: 200).
  • --project_name: Name of the project for wandb logging.
  • --device: Device to run the training on (e.g., 'cuda:1').
  • --use_wandb: Flag to enable or disable wandb logging ('True' or 'False').

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages