forked from radimspetlik/hr-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-evaluation.py
128 lines (101 loc) · 6.72 KB
/
test-evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from cmp.nrppg.db.datasetworkers import Dataset
from cmp.nrppg.cnn.ModelLoader import ModelLoader
from cmp.nrppg.experiments.compute_performance import main as compute_performance
from cmp.nrppg.experiments.frequency_analysis import main as freqeuency_analysis
from cmp.nrppg.experiments.extract_pulse_cnn import main as extract_pulse_main
import logging
import os
import torch
def perform_experiments(database, protocol='all', qf=None):
__logging_format__ = '[%(levelname)s] %(message)s'
logging.basicConfig(format=__logging_format__)
logger = logging.getLogger("cnn-experiments_log")
logger.setLevel(logging.DEBUG)
logger.info('Performing experiments on %s database, protocol %s.' % (database, protocol))
compressed = ''
if 'compressed' in database:
compressed = '-compressed'
database = database.split('-')[0]
fps = 0
metrics = ['whole']
if database == Dataset.PURE:
fps = 30
elif database == Dataset.COHFACE:
fps = 20
elif database == Dataset.HCI:
fps = 61
elif database == Dataset.ECG_FITNESS:
fps = 30
# for which subset to extract signals?
subset = '' # '--subset '
start_end = '' # ''--start 306 --end 2136'
current_dir = os.path.dirname(os.path.abspath(__file__))
db_dir = os.path.join(hr_directory, 'db', str(database))
best_extractor_model = {}
extractor_model_trained_on_db = 'ecg-fitness'
best_extractor_model['pure'] = '08-03-2018_11-31-02-752459_arch=FaceHRNet09V2ELURGB_snr_median_best_epoch_min-std-0.10_em-after-1002_batch-size-300'
best_extractor_model['cohface'] = '08-03-2018_12-22-31-356393_arch=FaceHRNet09V2ELURGB_snr_median_best_epoch_min-std-0.10_em-after-1002_batch-size-300'
best_extractor_model['hci'] = '08-03-2018_19-21-12-541339_snr_median_best_epoch_architecture-FaceHRNet09V2ELURGB_min-std-0.10_em-after-1002_batch-size-500'
best_extractor_model['ecg-fitness'] = '08-05-2018_23-04-07-384974_arch=FaceHRNet09V4ELURGB_lr=1E-05_batch-size=300_fine_tuning_extractor_val_mae_best'
best_estimator_model = {}
estimator_model_trained_on_db = database + compressed
best_estimator_model['pure'] = '25-04-2018_19-06-03-277330_arch=SNREstimatorNetMonteCarlo_lr=1E-01_batch-size=600_db-name=pure_epoch=386_val_mae_best'
best_estimator_model['pure-compressed'] = '22-04-2018_19-26-38-212160_arch=SNREstimatorNetMonteCarlo_lr=1E-01_batch-size=600_db-name=pure_epoch=371_val_mae_best'
best_estimator_model['cohface'] = '17-04-2018_19-50-38-274449_arch=SNREstimatorNetMonteCarlo_lr=1E-01_batch-size=600-cohface_epoch=362_trn-val_mae_best'
best_estimator_model['hci'] = '15-04-2018_15-27-56-539166_arch=SNREstimatorNetMonteCarlo_lr=1E-01_batch-size=600-hci_epoch=273_val_rmse_avg_best'
best_estimator_model['ecg-fitness'] = '09-05-2018_09-52-57-210538_arch=SNREstimatorNetMonteCarlo_lr=1E-02_batch-size=300_fine-tuning_estimator_val_mae_best'
extractor_model_name = best_extractor_model[extractor_model_trained_on_db]
estimator_model_name = best_estimator_model[estimator_model_trained_on_db]
extractor_model_path = os.path.join(models_dir, extractor_model_name)
estimator_model_path = os.path.join(models_dir, estimator_model_name)
base_expe_dir = os.path.join(hr_directory, 'experiments', 'cnn', str(database) + compressed + '-' + str(protocol)
+ '_evaluated_by_%s_cnn' % (extractor_model_trained_on_db), '_'.join(extractor_model_name.split('_')[:5]))
faces_dir = os.path.join(hr_directory, 'experiments', 'cnn', str(database) + compressed + '-face-192x128')
pulse_dir = os.path.join(base_expe_dir, 'pulse')
hr_dir = os.path.join(base_expe_dir, 'hr')
stats_dir = os.path.join(base_expe_dir, 'stats')
results_dir = os.path.join(base_expe_dir, 'results')
# fixed parameter
n_segments = 16
nfft = 8192
id = 0
pool_size = 1
extractor_model, rgb = ModelLoader.load_model(extractor_model_path, 'extractor', True)
extractor_model.cuda()
extractor_model.eval()
# signals extraction
extract_pulse_main(extractor_model, rgb, id, pool_size,
str(database) + ' --overwrite -v --plot --protocol ' + str(protocol) + ' ' + str(start_end) + ' ' + str(
subset) + ' --cnn-model-path ' + str(extractor_model_path) + ' --dbdir ' + str(
db_dir) + ' --faces-dir ' + str(
faces_dir) + ' --outdir ' + str(pulse_dir) + ' --batch-size ' + str(batch_size))
estimator_architecture_name = estimator_model_name.split('_')[2].split('=')[1]
estimator_model, rgb = ModelLoader.initialize_model(estimator_architecture_name, 'estimator', True)
if "MonteCarlo" in estimator_architecture_name:
mc_conf = torch.load(os.path.join('_'.join(estimator_model_path.split('_')[:7]) + '_monte-carlo-configuration'))
try:
estimator_model.setup(mc_conf['active_layers'], mc_conf['max_pool_kernel_size'], mc_conf['conv_kernel_size'],
mc_conf['conv_filter_size'])
except AttributeError as e:
estimator_model.module.setup(mc_conf['active_layers'], mc_conf['max_pool_kernel_size'], mc_conf['conv_kernel_size'],
mc_conf['conv_filter_size'])
estimator_model = ModelLoader.load_parameters_into_model(estimator_model, estimator_model_path, True)
estimator_model.cuda()
estimator_model.eval()
# computing heart-rate
freqeuency_analysis(estimator_model, id, pool_size, metrics, hr_directory, fps, str(database)
+ ' --overwrite --plot --dbdir '
+ str(db_dir) + ' --protocol ' + str(protocol) + ' ' + str(subset) + ' --indir ' + pulse_dir
+ ' --outdir ' + hr_dir + ' --framerate ' + str(fps) + ' --nsegments ' + str(n_segments)
+ ' --nfft ' + str(nfft) + ' --stats-outdir ' + str(stats_dir) + ' -v')
logger.info('Frequency analysis done.')
compute_performance(qf, metrics, str(database) + ' --overwrite --plot --dbdir ' + str(db_dir) + ' -v --protocol ' + str(protocol)
+ ' --subset train --indir ' + hr_dir + ' --outdir ' + results_dir)
compute_performance(qf, metrics, str(database) + ' --overwrite --plot --dbdir ' + str(db_dir) + ' -v --protocol ' + str(protocol)
+ ' --subset test --indir ' + hr_dir + ' --outdir ' + results_dir)
if __name__ == "__main__":
hr_directory = os.path.join('data')
models_dir = os.path.join(hr_directory, 'models')
dataset = Dataset.ECG_FITNESS
batch_size = 600
perform_experiments(dataset, 'test')