forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
123 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
build: | ||
gpu: true | ||
python_version: "3.8" | ||
system_packages: | ||
- "libgl1-mesa-glx" | ||
- "libglib2.0-0" | ||
python_packages: | ||
- "imageio==2.9.0" | ||
- "torch==1.8.0" | ||
- "torchvision==0.9.0" | ||
- "numpy==1.21.1" | ||
- "insightface==0.2.1" | ||
- "ipython==7.21.0" | ||
- "Pillow==8.3.1" | ||
- "opencv-python==4.5.3.56" | ||
- "Fraction==1.5.1" | ||
- "onnxruntime-gpu==1.8.1" | ||
- "moviepy==1.0.3" | ||
|
||
predict: "predict.py:Predictor" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import cog | ||
import tempfile | ||
from pathlib import Path | ||
import argparse | ||
import cv2 | ||
import torch | ||
from PIL import Image | ||
import torch.nn.functional as F | ||
from torchvision import transforms | ||
from models.models import create_model | ||
from options.test_options import TestOptions | ||
from util.reverse2original import reverse2wholeimage | ||
from util.norm import SpecificNorm | ||
from test_wholeimage_swapmulti import _totensor | ||
from insightface_func.face_detect_crop_multi import Face_detect_crop as Face_detect_crop_multi | ||
from insightface_func.face_detect_crop_single import Face_detect_crop as Face_detect_crop_single | ||
|
||
|
||
class Predictor(cog.Predictor): | ||
def setup(self): | ||
self.transformer_Arcface = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
@cog.input("source", type=Path, help="source image") | ||
@cog.input("target", type=Path, help="target image") | ||
@cog.input("mode", type=str, options=['single', 'all'], default='all', | ||
help="swap a single face (the one with highest confidence by face detection) or all faces in the target image") | ||
def predict(self, source, target, mode='all'): | ||
|
||
app = Face_detect_crop_multi(name='antelope', root='./insightface_func/models') | ||
|
||
if mode == 'single': | ||
app = Face_detect_crop_single(name='antelope', root='./insightface_func/models') | ||
|
||
app.prepare(ctx_id=0, det_thresh=0.6, det_size=(640, 640)) | ||
|
||
options = TestOptions() | ||
options.initialize() | ||
opt = options.parser.parse_args(["--Arc_path", 'arcface_model/arcface_checkpoint.tar', "--pic_a_path", str(source), | ||
"--pic_b_path", str(target), "--isTrain", False, "--no_simswaplogo"]) | ||
|
||
str_ids = opt.gpu_ids.split(',') | ||
opt.gpu_ids = [] | ||
for str_id in str_ids: | ||
id = int(str_id) | ||
if id >= 0: | ||
opt.gpu_ids.append(id) | ||
|
||
# set gpu ids | ||
if len(opt.gpu_ids) > 0: | ||
torch.cuda.set_device(opt.gpu_ids[0]) | ||
|
||
torch.nn.Module.dump_patches = True | ||
model = create_model(opt) | ||
model.eval() | ||
|
||
crop_size = 224 | ||
spNorm = SpecificNorm() | ||
|
||
with torch.no_grad(): | ||
pic_a = opt.pic_a_path | ||
img_a_whole = cv2.imread(pic_a) | ||
img_a_align_crop, _ = app.get(img_a_whole, crop_size) | ||
img_a_align_crop_pil = Image.fromarray(cv2.cvtColor(img_a_align_crop[0], cv2.COLOR_BGR2RGB)) | ||
img_a = self.transformer_Arcface(img_a_align_crop_pil) | ||
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2]) | ||
|
||
# convert numpy to tensor | ||
img_id = img_id.cuda() | ||
|
||
# create latent id | ||
img_id_downsample = F.interpolate(img_id, scale_factor=0.5) | ||
latend_id = model.netArc(img_id_downsample) | ||
latend_id = F.normalize(latend_id, p=2, dim=1) | ||
|
||
############## Forward Pass ###################### | ||
|
||
pic_b = opt.pic_b_path | ||
img_b_whole = cv2.imread(pic_b) | ||
img_b_align_crop_list, b_mat_list = app.get(img_b_whole, crop_size) | ||
|
||
swap_result_list = [] | ||
b_align_crop_tenor_list = [] | ||
|
||
for b_align_crop in img_b_align_crop_list: | ||
b_align_crop_tenor = _totensor(cv2.cvtColor(b_align_crop, cv2.COLOR_BGR2RGB))[None, ...].cuda() | ||
|
||
swap_result = model(None, b_align_crop_tenor, latend_id, None, True)[0] | ||
swap_result_list.append(swap_result) | ||
b_align_crop_tenor_list.append(b_align_crop_tenor) | ||
|
||
net = None | ||
|
||
out_path = Path(tempfile.mkdtemp()) / "output.png" | ||
|
||
reverse2wholeimage(b_align_crop_tenor_list, swap_result_list, b_mat_list, crop_size, img_b_whole, None, | ||
str(out_path), opt.no_simswaplogo, | ||
pasring_model=net, use_mask=opt.use_mask, norm=spNorm) | ||
return out_path |