This project includes the whole training process. Specifically, I use PyTorch 1.7 VideoIO / Video Datasets Loading API / Video Transform
to process the Data. More Details:How to use Video Datasets,Video IO,Video Classification Models,Video Transform in PyTorch
The LRCN's paper:Long-term Recurrent Convolutional Networks for Visual Recognition and Description. download
Accuracy |
---|
62.43% (only 4 epochs) |
- Ubuntu 16.04.7 LTS
- CUDA Version: 10.1
- PyTorch 1.7.1
- torchvision 0.8.2
- numpy 1.19.2
- pillow 8.1.0
- python 3.8.5
- av 8.0.3
- matplotlib 3.3.4
Original Dataset:UCF101
After downloading the UCF101 dataset: UCF101.rar
and UCF101TrainTestSplits-RecognitionTask.zip
, you should seperately unrar them. Then put it into the directory named data
Project
│--- data
│------ UCF101
│------ UCF101TrainTestSplits-RecognitionTask
│--- other files
Before training, make sure you have a directory named model
in the root project to save checkpoint file.
python3 train.py
I recorded some problems and solutions when writing the code. Really so sorry that I only write in Chinese! Here is the Link