Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Blair1213 authored Jan 25, 2024
1 parent 5004733 commit 1886383
Showing 1 changed file with 8 additions and 1 deletion.
9 changes: 8 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
# [AAAI24] Dual-channel Learning Framework for Drug-Drug Interaction Prediction via Relation-aware Heterogeneous Graph Transformer

Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on lo- cal structures within DDI-related networks, often overlook- ing the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs re- mains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.

# Installation & Dependencies

TIGER is mainly tested on both Linux and Mac OS.

TIGER has the following dependencies on Mac OS:

0 comments on commit 1886383

Please sign in to comment.