forked from BAAI-DCAI/Bunny
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
2,235 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
from .language_model.bunny_phi import BunnyPhiForCausalLM, BunnyPhiConfig | ||
from .language_model.bunny_stablelm import BunnyStableLMForCausalLM, BunnyStableLMConfig | ||
from .language_model.bunny_qwen import BunnyQwenForCausalLM, BunnyQwenConfig |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
import torch.nn as nn | ||
from transformers import AutoConfig, AutoModelForCausalLM | ||
|
||
from .qwen2 import Qwen2Model, Qwen2Config, Qwen2ForCausalLM | ||
|
||
from transformers.modeling_outputs import CausalLMOutputWithPast | ||
|
||
from ..bunny_arch import BunnyMetaModel, BunnyMetaForCausalLM | ||
|
||
|
||
class BunnyQwenConfig(Qwen2Config): | ||
model_type = "bunny-qwen" | ||
|
||
|
||
class BunnyQwenModel(BunnyMetaModel, Qwen2Model): | ||
config_class = BunnyQwenConfig | ||
|
||
def __init__(self, config: Qwen2Config): | ||
super(BunnyQwenModel, self).__init__(config) | ||
|
||
|
||
class BunnyQwenForCausalLM(Qwen2ForCausalLM, BunnyMetaForCausalLM): | ||
config_class = BunnyQwenConfig | ||
|
||
def __init__(self, config): | ||
super(Qwen2ForCausalLM, self).__init__(config) | ||
self.model = BunnyQwenModel(config) | ||
self.vocab_size = config.vocab_size | ||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | ||
|
||
# Initialize weights and apply final processing | ||
self.post_init() | ||
|
||
def get_model(self): | ||
return self.model | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
labels: Optional[torch.LongTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
images: Optional[torch.FloatTensor] = None, | ||
return_dict: Optional[bool] = None, | ||
) -> Union[Tuple, CausalLMOutputWithPast]: | ||
|
||
if inputs_embeds is None: | ||
( | ||
input_ids, | ||
position_ids, | ||
attention_mask, | ||
past_key_values, | ||
inputs_embeds, | ||
labels | ||
) = self.prepare_inputs_labels_for_multimodal( | ||
input_ids, | ||
position_ids, | ||
attention_mask, | ||
past_key_values, | ||
labels, | ||
images | ||
) | ||
|
||
return super().forward( | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
labels=labels, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict | ||
) | ||
|
||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, attention_mask=None, | ||
**kwargs): | ||
images = kwargs.pop("images", None) | ||
|
||
_inputs = super().prepare_inputs_for_generation( | ||
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, | ||
**kwargs | ||
) | ||
|
||
if images is not None: | ||
_inputs['images'] = images | ||
return _inputs | ||
|
||
|
||
AutoConfig.register("bunny-qwen", BunnyQwenConfig) | ||
AutoModelForCausalLM.register(BunnyQwenConfig, BunnyQwenForCausalLM) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import TYPE_CHECKING | ||
|
||
from transformers.utils import ( | ||
OptionalDependencyNotAvailable, | ||
_LazyModule, | ||
is_tokenizers_available, | ||
is_torch_available, | ||
) | ||
|
||
|
||
_import_structure = { | ||
"configuration_qwen2": ["QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2Config"], | ||
"tokenization_qwen2": ["Qwen2Tokenizer"], | ||
} | ||
|
||
try: | ||
if not is_tokenizers_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
_import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"] | ||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
_import_structure["modeling_qwen2"] = [ | ||
"Qwen2ForCausalLM", | ||
"Qwen2Model", | ||
"Qwen2PreTrainedModel", | ||
"Qwen2ForSequenceClassification", | ||
] | ||
|
||
|
||
if TYPE_CHECKING: | ||
from .configuration_qwen2 import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2Config | ||
from .tokenization_qwen2 import Qwen2Tokenizer | ||
|
||
try: | ||
if not is_tokenizers_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
from .tokenization_qwen2_fast import Qwen2TokenizerFast | ||
|
||
try: | ||
if not is_torch_available(): | ||
raise OptionalDependencyNotAvailable() | ||
except OptionalDependencyNotAvailable: | ||
pass | ||
else: | ||
from .modeling_qwen2 import ( | ||
Qwen2ForCausalLM, | ||
Qwen2ForSequenceClassification, | ||
Qwen2Model, | ||
Qwen2PreTrainedModel, | ||
) | ||
|
||
|
||
else: | ||
import sys | ||
|
||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) |
144 changes: 144 additions & 0 deletions
144
bunny/model/language_model/qwen2/configuration_qwen2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Qwen2 model configuration""" | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = { | ||
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json", | ||
} | ||
|
||
|
||
class Qwen2Config(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a | ||
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of | ||
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 151936): | ||
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`Qwen2Model`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 22016): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
num_key_value_heads (`int`, *optional*, defaults to 32): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 32768): | ||
The maximum sequence length that this model might ever be used with. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether the model's input and output word embeddings should be tied. | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
use_sliding_window (`bool`, *optional*, defaults to `False`): | ||
Whether to use sliding window attention. | ||
sliding_window (`int`, *optional*, defaults to 4096): | ||
Sliding window attention (SWA) window size. If not specified, will default to `4096`. | ||
max_window_layers (`int`, *optional*, defaults to 28): | ||
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
```python | ||
>>> from transformers import Qwen2Model, Qwen2Config | ||
>>> # Initializing a Qwen2 style configuration | ||
>>> configuration = Qwen2Config() | ||
>>> # Initializing a model from the Qwen2-7B style configuration | ||
>>> model = Qwen2Model(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "qwen2" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=151936, | ||
hidden_size=4096, | ||
intermediate_size=22016, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=32, | ||
hidden_act="silu", | ||
max_position_embeddings=32768, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
tie_word_embeddings=False, | ||
rope_theta=10000.0, | ||
use_sliding_window=False, | ||
sliding_window=4096, | ||
max_window_layers=28, | ||
attention_dropout=0.0, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.use_sliding_window = use_sliding_window | ||
self.sliding_window = sliding_window | ||
self.max_window_layers = max_window_layers | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.attention_dropout = attention_dropout | ||
|
||
super().__init__( | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) |
Oops, something went wrong.