Skip to content
/ STT465 Public

STT 465 : Bayesian Statistical Methods (MSU)

Notifications You must be signed in to change notification settings

Boukos/STT465

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STT465: Bayesian Statistical Methods (MSU)

In this course we follow closely the required textbook: "A first Course in Bayesian Statistical Methods" (P.D. Hoff).

HW


Lectures


Chapter 1: Introduction and examples


Chapter 2: Belief, probability and exchangeability


Chapter 3: One-parameter models


Chapter 4: Monte Carlo approximations


Chapter 5: The normal model


Chapter 6: Posterior approximation with the Gibbs sampler


Review of Linear Algebra & Multivariate Normal


Multiple linear regression OLS and Maximum Likelihood


The multivariate normal distribution & intro to Bayesian multiple linear regression


Chapter 10: Nonconjugate priors and Metropolis-Hastings algorithms

  • Lecture
  • Examples

Chapter 11: Linear and generalized linear mixed effects models

  • Lecture
  • Examples

Chapter 12: Latent variable methods for ordinal data

  • Lecture
  • Examples

About

STT 465 : Bayesian Statistical Methods (MSU)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages